
July
2004

Issue 126
ISSN 0265-5195

news events people reviews projects programming

Forth Utilities

FIGUK magazine:

Debugging Tools
Certifying your Code

A VNM in Forth: update
Book Review

Forthwrite 126 — July 2004

(inside front cover – blank)

Forthwrite
July

2004
Issue 126

ISSN 0265-5195

 news

Forth News 3

 reviews

Book Review
Across the Big Teich
Vierte Dimension 1/2004

 20
 22
 26

 programming

Debugging Tools
Certifying your Code
A VNM in Forth: update

 4
 12
 18

 people

Letters

 17

www.fig-uk.org Forthwrite 126 – July 2004 1

Graeme Dunbar [g.r.a.dunbar@rgu.ac.uk]

Editorial
Once again I am very pleased to say we have a good crop of
contributed articles from members in this issue. They
illustrate what FIG UK and Forthwrite is all about – sharing
our ideas and experiences of programming in Forth with
fellow enthusiasts. Keep them coming!

I am sorry to say that after much consideration, Chris
Jakeman has decided not to take up the position of Editor

again. He reports that he has settled into his new job as a lecturer and although working
evenings and weekends on preparing teaching material he is thinking ahead to take on
research activities. I’m sure you will all join me in thanking him for his excellent work as
Editor and wish him all the best in his new career.

When I stepped in as Editor it was to cover for Chris on a temporary basis. The FIG UK
Library is being neglected and needs my attention, so now it is time to look for a new
Editor. The Committee has a number of thoughts on the matter and these are reported
in this issue (see Forth News), but it is my intention to step down at the next AGM.

Don’t forget the monthly IRC session. Our next ones are Saturday 7th August and
Saturday 4th September on the IRC server called “IRCNet”, channel #FIGUK from
9:00pm BST (that’s 2000 UTC for international participants, see:
http://www.timeanddate.com/worldclock/).

Until next time, sally Forth,

2 Forthwrite 126 – July 2004 Forth Interest Group UK

mailto:g.r.a.dunbar@rgu.ac.uk
http://www.timeanddate.com/worldclock/

Graeme Dunbar [g.r.a.dunbar@rgu.ac.uk]

Forth News

Graeme Dunbar

 A roundup of news and events from around the Forth world.

Forth Events

euroFORTH 2004
The dates for this year’s euroFORTH
conference have been confirmed as the 19th to
the 22nd of November 2004, to take place at
Castle Dagstuhl in Saarland, Germany. Details
can be found on the web site:
http://www.dagstuhl.de/Events/04/

Anton Ertl reports the following:

August 28th
Deadline for draft papers (academic stream)

September 11th

Deadline for abstracts (business/industrial
stream)

September 29th
Notification of acceptance of papers

October 26th
Deadline for final camera ready copy

November 19th
Conference opens.

Submission address for the academic stream:

Anton Ertl
[anton@mips.complang.tuwien.ac.at]
Institut für Computersprachen E185/1
Technische Universität Wien
Argentinierstraße 8/4
A-1040 Wien
Austria

Submission instructions can be found at
http://www.complang.tuwien.ac.at/anton/eurofo
rth2003/

FIG UK 25th Anniversary Reunion
FIG UK will be holding its Silver Jubilee this
November. Details to follow.

Forth Resources

FIG UK Forth CD
The FIG UK CD has been “Beta tested” by a
number of members and as a result some minor
changes are being made that will make it easier
for new Forth enthusiasts to use.

Forthwrite Editor
Chris Jakeman stepped down as Editor last
year and the post has been filled on a
temporary basis by the Librarian. I feel I
cannot devote as much time as it needs to
ensure the high standards of content and
production that he set and that my skills
and the facilities at my disposal are more
suited to running the FIG UK Library than
continuing as Editor. Therefore I plan to
step down at the next AGM and
consequently the Committee is looking for
a new Editor or Editorial Team.

As we do not have regular group meetings
or exhibitions where members can get
together Forthwrite is central to FIG UK’s
activities. It needs a team of members to
produce it.

At present Forthwrite is compiled by the
Editor from the excellent contributions by a
small group of dedicated members. An
electronic copy is emailed to Douglas
Neale, the membership secretary, who
prints it, oversees the reproduction and
then mails it to members. This division of
labour works very well and makes best use
of local resources.

(continued on page 11)

www.fig-uk.org Forthwrite 126 – July 2004 3

mailto:g.r.a.dunbar@rgu.ac.uk
http://www.dagstuhl.de/Events/04/

mpe [mpe@mpeltd.demon.co.uk]

Debugging Tools

Steven Pelc

This article from Stephen Pelc of MPE Ltd has been published almost exactly as it
was generated by DocGen in VFX Forth from the original Forth code. An
explanation of how this was achieved is given at the end of the article.

Debugging tools

Copyright (c) 1996-2004
MicroProcessor Engineering
133 Hill Lane
Southampton SO15 5AF
England

tel: +44 (0)23 8063 1441
fax: +44 (0)23 8033 9691
net: mpe@mpeltd.demon.co.uk
web: www.mpeltd.demon.co.uk

The file Common\DebugTools.fth provides debugging tools for MPE embedded systems created by
Forth 6 Cross Compilers. The emphasis is on 32 bit systems and interactive testing. The tools can
easily be ported to other systems. Copyright is retained by MPE. The code may be freely used on non-
MPE systems for non-commercial use.

Porting the code to other systems is up to you. This code may require some carnal knowledge of how
your system works. Most Forths contain the required words, but they may not have the same names
that MPE use.

Implementation dependencies

In MPE embedded systems, the USER variables IPVEC and OPVEC contain the address of the device
structure used for input and output by KEY, EMIT and friends. In VFX Forth for Windows/Linux, the
variables are IP-HANDLE and OP-HANDLE.

: consoleIO \ --

Select debug console for output. By default this is the CONSOLE device.

4 Forthwrite 126 – July 2004 Forth Interest Group UK

 console opvec ! console ipvec !

 Echoing on Xon/Xoff off

;

: name? \ addr -- flag MPE.0000

Check to see if the supplied address is a valid NFA, returning true if the address appears to be a valid
NFA. This word is implementation dependent. For MPE cross compilers, a valid NFA for MPE
embedded systems satisfies the following:

• All characters within string are printable ASCII within range 33..126

• String Length is non-zero in range 1..31 and bit 7 is set, ignore bits 6, 5
 count \ c-addr u --

 dup $9F and $81 $9F within? 0= \ NFA first byte = 1SIxxxxx, count = xxxxx

 \ mask = 10011111

 if 2drop 0 exit then

 $01F and bounds ?do

 i c@ #33 #126 within? 0= \ check all ascii chars

 if unloop FALSE exit then

 loop

 TRUE

;

: ip>nfa \ addr -- nfa

Attempt to move backwards from an address within a definition to the relevant NFA.
 2- \ NFA must be at least 'n' bytes backwards

 begin

 dup name? 0=

 while

 1-

 repeat

;

: >name \ xt -- nfa

Move from a word's xt to its name field. If >NAME does not exist IP>NFA will be used.
 ip>nfa

;

: .name \ nfa –

Given a word's NFA display its name.
 count $1F and type

;

: .DWORD \ dw –

www.fig-uk.org Forthwrite 126 – July 2004 5

Display the 32 bit long word 'dw' as an 8 digit hex number.
 base @ hex swap

 0 <# # # # # ascii : hold # # # # #> type

 base !

;

Miscellaneous

MPE systems use TICKS (-- ms) to return a running time count in milliseconds. Windows systems
can use the GetTickCount API call.

: times \ n -- ; n TIMES <word>

Execute <word> n times, and display the execution time. The ticker interrupt must be running.
 ticks ' rot 0 \ -- ticks xt n 0

 ?do dup execute loop

 drop

 ticks swap - . ." ms"

;

: .ColdChain \ --

Display all words added to the cold chain. Note that the first word added is displayed first. In VFX
Forth this word is called ShowColdChain.
 cr ColdChainFirst

 begin

 dup

 while

 dup cell + @ >name .name \ execute XT

 @ \ get next entry

 repeat

 drop

;

: .decimal \ n –

Display a value as a decimal number.
 base @ >r decimal . r> base !

;

: .hex \ n –

Display a value as a hexadecimal number.
 base @ >r hex u. r> base !

6 Forthwrite 126 – July 2004 Forth Interest Group UK

;

: [con \ -- ; R: -- consys

Saves BASE and the current i/o vectors on the return stack, and then switches to the console and
decimal.
 r>

 base @ >r opvec @ >r ipvec @ >r

 ConsoleIO decimal

 >r

;

: con] \ -- ; R: consys –

Restores BASE and the current i/o vectors from the return stack.
 r>

 r> ipvec ! r> opvec ! r> base !

 >r

;

: CheckFailed \ ip caddr len –

Given the address at the fault occurred and a string, ouput the string and some diagnostic information.
 [con

 cr type ." failed at "

 dup .dword ." in " ip>nfa .name

 con]

;

Stack checking

Especially in multi-tasked systems, stack errors can be fatal. Detecting them as early as possible
reduces debugging time. These words rely on Forth return stack cells containing return addresses. This
is true on the vast majority of Forth systems except for some 8051 and real-mode 80x86 systems. If
you find others, please let us know.

: ?StackDepth \ +n –

If the stack depth before +n is not n, issue a console warning message and clear the stack. Note that
this word is implementation dependent.
 dup 2+ depth =

 if drop exit endif \ no failure

 [con

 cr ." *** Stack fault: depth = " depth 1- 0 .r ." (d) "

 ." in task " self .task \ indicate current task

 >r s0 @ sp! r> 0 ?do 0 loop \ set required depth

www.fig-uk.org Forthwrite 126 – July 2004 7

 cr ." Stack updated."

 con]

;

: ?StackEmpty \ --

If the stack depth is non-zero, issue a console warning message and clear the stack.
 0 ?StackDepth

;

: TaskChecks \ --

Use in task to check for creeping stacks and so on. This word can be extended to provide additional
internal consistency checks.
 ?StackEmpty

;

: SF{ \ n -- ; R: -- depth

n SF{ }SF will check for stack faults. n describes the stack change between SF{ and }SF. If the
stack change is different, an error message is generated. This word will work on most systems in
which the return address is held on the return stack.
 r> swap depth 2- + >r >r

;

: }SF \ -- ; R: depth -- ; perform stack check

The end of an SF{ ... }SF structure. This word is not strictly portable as it assumes that the Forth return
stack holds a valid return address. In the vast majority of cases the assumption is true, but beware of
some 8051 implementations. See SF{
 r>

 r> depth 2- <> if

 dup s" Stack check" CheckFailed

 endif

 >r

;

Assertions

Assertions are a useful way to check that the system is behaving correctly. When the phrase:
 [ASSERT <test> ASSERT]

is compiled into a piece of code, the test is performed and generates an error report if the result is false.
If you do not want the performance overhead of the test, set the value ASSERTS? to zero. To remove
even the small overhead of of testing ASSERTS?, comment out the line.

-1 value assert? \ -- n

Returns non-zero if asserts will be tested.

8 Forthwrite 126 – July 2004 Forth Interest Group UK

: (assert) \ flag –

If flag is zero, report an ASSERT error.
 if exit endif \ faster on some CPUs

 r@ s" ASSERT" CheckFailed

;

: [assert \ --

Compile the code to start an assert.
 ?comp

 postpone assert? postpone if

; immediate

: assert] \ --

Compile the code to end an assert.
 ?comp

 postpone (assert) postpone then

; immediate

Here is a simple assert that will fail if BASE is not DECIMAL.

: foo \ --

 [assert base @ #10 = assert]

;

Editing the Article
The text above has been presented almost exactly as it appeared in the html file supplied by
the author. It has simply been cut and pasted with the inter-paragraph spacing then being
adjusted to make it fit the A5 format. Shown over the page are extracts from the original
DEBUGTOOLS.FTH source code file to illustrate the various formatting tags used.
Stephen Pelc added the following explanation of how the process is carried out in the
following email exchange. – Editor.

> Many thanks for the article. I can load the html into Word and
> preserve most of the formatting. Is the formatting done automatically
> by DocGen?

Yes. The file DEBUGTOOLS.FTH contains both code and the
documentation. Lines of the form
\ *X
are processed by DocGen, which automatically generates the HTML.

www.fig-uk.org Forthwrite 126 – July 2004 9

If you have the free evaluation version of VFX Forth for Windows
from the web site, you can try it yourself:

+docgen docgen_html
doconly debugtools
-docgen

I'll be putting up the v3.7 version that generated the HTML in a
few days.

> How does the code appear on the screen as it is being edited?
It's in DEBUGTOOLS.FTH so it depends how you set up your editor. The
whole point is that that the documentation is generated
directly from the source code.

The free evaluation version of VFX Forth for Windows can be downloaded from the MPE web
site at: http://www.mpeltd.demon.co.uk/arena.htm

Original Source Code

\ DEBUGTOOLS.FTH - debug tools for XC6.2

\ =============
\ *! debugtools
\ *T Debugging tools
\ =============

\ *E Copyright (c) 1996-2004
\ ** MicroProcessor Engineering
\ ** 133 Hill Lane
\ ** Southampton SO15 5AF
\ ** England
\ **
\ ** tel: +44 (0)23 8063 1441
\ ** fax: +44 (0)23 8033 9691
\ ** net: mpe@mpeltd.demon.co.uk
 tech-support@mpeltd.demon.co.uk
\ ** web: www.mpeltd.demon.co.uk

((
To do
=====

Change history
==============
20040614 MPE001 Overhaul and used to test DocGen from VFX Forth 3.7
))

decimal

\ *P The file *\i{Common\DebugTools.fth} provides debugging tools
\ ** for MPE embedded systems created by Forth 6 Cross Compilers.
\ ** The emphasis is on 32 bit systems and interactive testing.
\ ** The tools can easily be ported to other systems. Copyright is
\ ** retained by MPE. The code may be freely used on non-MPE systems
\ ** for non-commercial use.

\ *P Porting the code to other systems is up to you. This code
\ ** may require some carnal knowledge of how your system works.

10 Forthwrite 126 – July 2004 Forth Interest Group UK

http://www.mpeltd.demon.co.uk/arena.htm

\ ** Most Forths contain the required words, but they may not
\ ** have the same names that MPE use.

\ ******************************
\ *S Implementation dependencies
\ ******************************
\ *P In MPE embedded systems, the *\fo{USER} variables *\fo{IPVEC}
\ ** and *\fo{OPVEC} contain the address of the device structure
\ ** used for input and output by *\fo{KEY}, *\fo{EMIT} and friends.
\ ** In VFX Forth for Windows/Linux, the variables are *\fo{IP-HANDLE}
\ ** and *\fo{OP-HANDLE}.

[undefined] consoleIO [if]
: consoleIO \ --
\ *G Select debug console for output. By default this
\ ** is the *\fo{CONSOLE} device.
\ *[
 console opvec ! console ipvec !
 Echoing on Xon/Xoff off
;

 (middle section deleted)
compiler
: [assert assert? if ;
: assert] (assert) then ;
target

\ *P Here is a simple assert that will fail if *\fo{BASE} is not
\ ** *\fo{DECIMAL}.
\ *E : foo \ --
\ ** [assert base @ #10 = assert]
\ ** ;

\ ======
\ *> ###
\ ======

(Forth News - continued from page 3)

You will recall that Chris Jakeman not only
edited the newsletter also made a
considerable contribution as author and
reporter. I do not have the time or the
Forth skills to emulate him and neither, I
suspect, do many other members.

The committee have mulled over the
problem and have come up with a number
of ideas.

Firstly, the Editorship might be taken on by
someone who has retired from full time
employment. I am assured that an active
retirement does not bring with it abundant
spare time, but it does perhaps give the

individual a little more control over how
that time is allocated. Other suggestions
involve sharing the load between several
individuals in various ways. Part of this
might involve a “Forth News” Reporter, and
a “From the Net” Correspondent as
advertised in the last issue. Further splits
between information gathering and
compositing may be appropriate.

What is clear is that it is not the typing and
formatting that consumes the time but
seeking out articles and authors to publish
in these pages and following them up.

If you are interested in taking on the post,
or contributing to production please
contact the present editor.

www.fig-uk.org Forthwrite 126 – July 2004 11

Paul E. Bennett [peb@amleth.demon.co.uk]

Certifying your Code

Paul E. Bennett [HIDECS Consultancy]

Thorough testing and verification of code is often neglected. Paul
Bennett introduces us to concepts and procedures that we can all use
and concludes that Forth can be used in most safety critical situations.

It has been a long held belief, within the software industry generally,
that the only programmes that are capable of being 100% tested are
"Toy" programmes. I am presuming that this is meant to indicated
programmes of under a couple of hundred LOC. Programmes of such a
small size would be quite within the realms of any programmer (in
whatever language) to fully test in reasonable time. However, let us
look at what Forth gives us that is different to many programming
environments.

High Integrity Systems, we are assured, have been thoroughly tested.
This leaves us all with the unanswered question of "How Thorough is
thorough?" Considering that much of the High Integrity software that
keep our planes in the sky, run our traffic lights and keep us alive on
the operating theatre table are usually many thousands of lines of code
can we trust that the testing has been done well enough to give us
confidence. What the hardware sector has that the software sector
would probably like to have is the ability to attach a "Certificate of
Conformity" that can present tangible proof that the system has been
developed and tested in accordance with some auditable standard
method.

The software tools industry always seem to be promising that the new whizzo software tool is
the "Silver Bullet" we have been seeking. Development suites like Rhapsody (from Ilogix) or
SPARK-Ada have been touted as the most logical choice for Safety Critical Systems
Development because they are proven correct mathematically. Not only are these tools very
expensive they also seem to give an unwelcome boost the resources requirements on the
embedded system.

In a recent thread on comp.lang.forth Pete < forthsafe@yahoo.com > asked whether or not
Forth could be used in Safety Critical Systems and pass the stringent requirements of FDA or
DO178B. As one who has been involved in the development and certification of systems that

12 Forthwrite 126 – July 2004 Forth Interest Group UK

mailto:forthsafe@yahoo.com

have had to pass such scrutiny I am happy to say that Forth, produced in the right way, can
indeed be used for such projects.

In Forth, each word can be considered as a complete programme in its own right. It may be
just a subroutine of a much larger programme but in itself it is quite complete and, at the
interpreted level, is interactively available for quite thorough testing. Any Forth word can be
considered as a fully single minded simple programme in itself. The ultimate "Toy"
programme.

Because Forth words, written properly (preferably with reference to a coding standard), are
usually quite small and simple we are merely coupling a number of individual, complete,
simple programmes.

Each word constructed using other previously tested words would inherit the properties of the
testing already carried out. The words in a specific lexicological grouping can be seen as
existing between programming surfaces that provide the API between functional entities. In
this way, the most complex Forth programmes can carry through the testing at a level that is
more or less trivially accomplished.

The idea of programming surfaces establishes a useful reference for situations where
application code is developed away from the real target. So long as the certification can fully
prove equivalence there should remain no issues (bar hardware timing) that would invalidate
the certification of the software.

It was realising this simple facet of Forth that gave me confidence enough to develop the
review and testing process to a method for fully certifying Forth code. The method also works
with assembly, so long as the assembly subroutines are small, single function, highly coherent
and utilise minimal coupling of the systems the code is being developed for.

It should be obvious that the development process by which High Integrity Software is
developed for these Safety Critical Systems should be rigorous, and rigorously applied.
Development Management processes that fall below CMMR level 3 are less likely to be trusted
well enough for software certification to be believable. Ideally, the organisation should be at
level 4 or 5. Therefore, establishing a decent development process is a necessary pre-requisite
to being able to produce certifiable software. It is an absolute necessity that the exact source
code that is certified is always uniquely identifiable (name, version, production date, test
dates etc). A version control and configuration management system, therefore, becomes
essential.

Within this article I have included an arbitrary bit of code which should illustrate how the
certification process not only improves the presentation of the code but also ensures its
logically correct implementation. The form format is made part of the source code file along
with the words glossary description and any additional notes. The example code is simple
enough to follow without the addition of the glossary comments. However, the incorporation
of the glossary text within the source files aids fuller understanding without having to
reference other sources.

www.fig-uk.org Forthwrite 126 – July 2004 13

\ **
: .TOS (S: n1 -- n1)
(G: Non-destructively print the top of parameter stack item)
(n1 to the current terminal.)

* * * *
**

n1\n2 -- n2\n3)

G: Given two numbers, n1 and n2, of a Fibonacci series)

* * * *
* * * *

 * *

**
n2\limit --)

bers, n1 and n2, of a Fibonacci series)

PEAT 2DROP R> DROP
**

The three boxes underneath the word definition are intended as an appropriate space in
t signatures from the code inspection and test personnel. The three boxes deal

t

DUP . ;
\ **
\ * Inspection * Function Test * Limits Test *
\ * * * *
\ * * * *
\
\

\ ***
: FIB-ALG (S:
(
(calculate the next number, n3, of the series.)
SWAP OVER + ;

\ **
\ * Inspection * Function Test * Limits Test *
\
\
\ * *
\ **

\ **
: FIBONACCI (S: n1\
(G: Given the two num
(calculate and print the succeeding numbers in the series)
(up to limit to the current terminal.)
>R
BEGIN DUP R@ > NOT
WHILE .TOS FIB-ALG
RE
\
\ * Inspection * Function Test * Limits Test *
\ * * * *
\ * * * *
\ * * * *
\ **

which to collec
with a specific aspect of the inspection and tests to be applied. You can choose whether or no
the three boxes are a permanent feature within the source file or generated during
documentation print-out. You may even discover a way, within your own configuration
management system, to incorporate electronic signatures within these boxes.

14 Forthwrite 126 – July 2004 Forth Interest Group UK

Inspection
This is the traditional static inspection run

www.fig-uk.org Forthwrite 126 – July 2004 15

until the product in which the software exists is no lon
years following its decommissioning.

Programming Surfaces
I have used the term programming surfaces in this

 along Fagan Inspection lines. The code inspector
should ensure that the code appears to fully implement the requirements stated within the

 part of the source. This requires that the inspector will need to ensure that
the called words used within this definition are also previously certified. Previous reviews of

The function test is the first time that the code is formally run. The code might have been
 programmer immediately after coding but this formal run records the

performance of the word in comparison to the intent expressed in the glossary text. Several

st

The Limits test is an opportunity to test the code to beyond the expected normal range of
ll

ation is, as far as is practicable, out of the normal
operational range.

With the code having satisfied the test and inspection personnel, their signatures can be

g nal five

 e

surfaces can be proven equivalent,
allow easy movement of segments of

glossary text that is

the glossary text should have, of course, ensured that the intent for the word under
examination as defined in the glossary text is right for the application. This is one of the
benefits of writing the glossary text first.

Function Test

exercised by the

occurrences of the function test would be usual, especially with different representative
values, to provide a level of confidence that the function always does as is expected. This te
only covers the normal operating range.

Limits Test

operation. If the code is able to deal with wildly out of bounds input stimuli, high rate ca
demand (if the code is an interrupt) and still behave in a rational manner then this test can be
deemed passed. In order to perform this test on your code often requires a very inventive
frame of mind to ensure that the oper

attached to the source print-out. This signed listing then needs storing in a long term archive
er in service and an additio

article and perhaps now is a good tim
to explain what they are.

The best description of programming
surfaces is perhaps as an interface
between underlying machine level
code and the application language
layer or between the application
language layer and the application
itself. This idea of surfaces is very
useful for demarcation of the various
elements of a system which, if the

code from one platform to another. This is most useful when the underlying processor
platform goes out of production and you need to replace it with another similar item of
hardware. So long as the machine-level to application language level interface surfaces are
proven equivalent there should be very little problem in making the substitution. This also
works on a finer grained level throughout Forth.

nd

 that tracks modifications of the source code, can
lead to the production of fully certifiable code that satisfies the most stringent requirements

ge of testing can
easily approach 100% of all statements.

standards will improve the quality factors for the software. This improvement is mainly won
rough an orderly increase in the level of inspection that the code undergoes. It is also due to

n improvement in monitored testing to beyond mere functional parameters.

ertification process in mind I
 a software

e

including Petrochemical, Marine, Railway, Medical and
Transportation Industries. He has been an advocate
of the use Forth in High Integrity Distributed
Embedded Control Systems. He has written articles
on many topics in Forthwrite including real-world
interfacing (see http://www.amleth.demon.co.uk

Programming surfaces are part of a component oriented approach to system development.
Components are a firmer, harder edged form of objects that can be comprehended, tested a
proven of sufficiently good quality.

Summary
This technique to certification is very simple to apply and, coupled with a suitably robust
version and change management process

(DO178B, FDA, CE marking etc.).

Just creating source code that incorporates the inspection boxes is not enough. The code has
got to qualify by proper inspection and testing methods being applied. Covera

Application of a certification process against coding standards and language specification

th
a

With this simple c was able to confirm that Forth could indeed be
based solution was a viable choice. used in the most safety critical projects where

Paul E. Bennett

Paul E. Bennett is an Independent Consultant
currently working in the Nuclear Power Industry. H
has had experience in many Safety Critical sectors

).

16 Forthwrite 126 – July 2004 Forth Interest Group UK

http://www.amleth.demon.co.uk/

Letters
Letters to the Editor are always welcome. Please send them the old-fashioned way or by
email – which ever is most convenient.
James Boyd has been delving into Win32Forth…

Dear Graeme,

I have noticed that Win32Forth uses compiler security to prevent mismatched control
structures. There is no compiler security to prevent defining locals within the scope of a
control structure (which the standard forbids). To add compiler security to locals in
Win32Forth requires only two simple redefinitions:

: locals| ?csp postpone locals| ; immediate
: { ?csp postpone { ; immediate

I have included a Forth source file for even more locals security for those who want it. The
code prevents defining locals with data stored on the return stack with >r and\or 2>r. It also
prevents interpreting >r r> 2>r 2r> from the console and the resulting exception. Maybe the
attachment is overly cautious but, a newbie would sure appreciate it.

Regards,

Jim

www.fig-uk.org
\ Safer way to implement locals on Win32Forth
\ James Boyd April 24th, 2004 - 6:29

variable balance

: : (-<name>-) balance off : ;
: >r ?comp 1 balance +! postpone >r ; immediate

: 2>r ?comp 2 balance +! postpone 2>r ; immediate

: r> ?comp -1 balance +! postpone r> ; immediate

: 2r> ?comp -2 balance +! postpone 2r> ; immediate

: ?balance (--) balance @ abort" items on return stack" ;

: locals| ?csp ?balance postpone locals| ; immediate
: { ?csp ?balance postpone { ; immediate

comment:

: BadTest1 >R locals| a b | r> ;

: BadTest2 if locals| a b | then ;

: GoodTest locals| a b | cr a . b . 3 >r . r> ;

see GoodTest

comment;
Forthwrite 126 – July 2004 17

James Boyd [JimBoyd@techemail.com]

A VNM in Forth: update
James A. Boyd

Following his two part article on Virtual Nondeterministic Machines in Forth, James
Boyd presents a modification to deal with locals.

Here is an update on the Virtual Nondeterministic Machine (VNM). As defined, locals and
nondeterministic operations (choice and failure anyway) can not be in the same word. Also,
nondeterministic operations can not be in a word called by a word with locals. Here are some
modifications to fix that minor problem.

In Win32Forth the locals are saved on the return stack and referenced by a local pointer
therefore, saving and restoring the local pointer by redefining:

: SaveData (--) SaveDataStack SaveOther ;

: RestoreData (--) RestoreOther RestoreDataStack ;

as:
: SaveData (--) SaveDataStack LP @ >history SaveOther ;

: RestoreData (--) RestoreOther history> LP ! RestoreDataStack ;

will allow words with locals to contain nondeterministic operations.

In Gforth it is a little trickier (okay, a lot trickier). I can not guarantee the following code
even though I tested it briefly. I wish I could do better, but I am not that familiar with Gforth.
Maybe someone familiar with Gforth can improve upon this.

In Gforth the locals are maintained on a separate locals stack therefore the following
definitions can be added:

: SaveLocal (--)

 lp@ [lp@] literal over - tuck (# adr #)

 m>history >history ;

: RestoreLocal (--)

 history> [lp@] literal over - lp! (#)

 lp@ swap mhistory> (--) ;

and SaveData and RestoreData can be redefined as:

: SaveData (--) SaveDataStack SaveLocal SaveOther ;

: RestoreData (--) RestoreOther RestoreLocal RestoreDataStack ;

18 Forthwrite 126 – July 2004 Forth Interest Group UK

mailto:JimBoyd@techemail.com

to allow nondeterministic operations. I tested this with some nondeterministic code with
locals and it seems to work.

I realize that compiling the address of the local stack as a literal is a kludge, but I could not
find the base address of the local stack in Gforth. The VNM code to save and restore the locals
does not actually use locals (nor does any code for the VNM). Using a fixed address instead
of an address from a user variable will make it even harder to integrate multi-tasking within
the Forth system with the VNM (The VNM is of course unaffected by the host OS multitasking
as long as sufficient resources are available). Currently, the only multi-tasking possible with
the VNM is if the background tasks do not contain any nondeterministic operations. I do not,
at present, see any use for background tasks with nondeterministic operations, so I do not
consider this much of a limitation.

I wrote some test code to make sure that if the Gforth system used locals that the local stack
depth would be the same whether compiling or interpreting (when not using locals in the
new definition) by executing test3 from the keyboard:

: test1 (--) [lp@] literal ; \ compile value of lp@ as literal

: test2 (--) lp@ ; \ lp@ returns present value at
runtime

: test3 (--) cr test1 test2 = \ is local stack depth same for
both?

 if ." Same"

 else ." different"

 then ;

and the result was that they are the same. I also verified that the local stack in Gforth grows
toward lower memory.

Errata
Regions: into unknown Win32Forth, by David R. Pochin

In Forthwrite Issue 125 (May 2004) the author’s name was misspelled. The Editor expresses
his apologies to Dave for this.
The electronic copy of Forthwrite which will be posted on the web in due course will show the
correct spelling.

www.fig-uk.org Forthwrite 126 – July 2004 19

Paul E. Bennett [peb@amleth.demon.co.uk]

Book Review

"Design of embedded systems using
68HC12/11 microcontrollers"

 by Richard E. Haskell.

Reviewer: Boris Fennema.

This book does what it says in the title. It comes with a diskette but there are updates and
further information available on Richard Haskell's web site,
http://www.cse.secs.oakland.edu/haskell/ . There are errata in the diskette as shipped with
the book so it is important to download the new images from the author's web site if you
consider using it on a target board.

The book can be used as a reference for the 68HC11, but its main focus is on the 'HC12.
However, it does cover both in detail and in the appendices.

It starts with a brief outline in which it introduces the Motorola 68HC11 and 68HC12,
including a description of the hardware in block diagram form with peripherals and
schematics, followed by the register model, flags, addressing modes and the opcode model. All
this information is also available as an Appendix in datasheet format.

It then shows how you would write code for the microcontroller using Motorola tools such as
AS12 and D-BUG12. The first program adds and subtracts two literals producing the sum and
difference - this simple example is then used to explore the weaknesses in this approach
(hardcoded values, hardcoded result locations and a one-shot program). These flaws are
shown to be remedied by introducing a data stack for argument passing and a means of
calling standard sub-routines ('words') that act on that data. This is then used to introduce
WHYP (Words that Help You Program) which is an umbilical Forth language.

The design of WHYP is discussed from the ground up. For example it is explained that the host
program which is written in C++ communicates with the HC11/HC12 board via the serial
port and that there is a small kernel running on the board that looks like (simplified no
handshaking):

LOOP BSR INWDY
JSR 0,Y
BRA LOOP

This means that the development board sits in an infinite loop. It starts by branching to a
routine 'INWDY' - this reads 2 bytes from the serial link and stores it in the Y register. The next
line then jumps to this address and upon return branches back to the start of the loop.

20 Forthwrite 126 – July 2004 Forth Interest Group UK

http://www.cse.secs.oakland.edu/haskell/

The address to execute can reside in EEPROM or in RAM. If desired WHYP can be expanded
by adding the words to the image and loaded into EEPROM.

The PC side of WHYP (PC-WHYP) is responsible for maintaining the correlation between
addresses on the target board and their names (dictionary). It also carries out screen display
and keyboard I/O on behalf of the target board. For example, if the target board executes the
word "." (dot) it will execute the location in RAM or EEPROM where "." resides as directed by
the dictionary and will send the command "display_integer" followed by the value at the top of
the stack back to the PC. PC-WHYP reads the opcode of the serial line and will know how to
interpret the next 2 bytes and display the integer on the screen. In the next chapters
additional words are added to WHYP. It may be of interest to know that WHYP can be ported
to various development boards from Motorola and Axiom as described in the book (F12UK
would be interesting project).

On other microcontrollers the concepts would be "portable" such as a possible means of
implementing an umbilical Forth. Along the way the examples vary from purely software tasks
to interfacing to various sensors, LED's and LCD screens to key pads etc. These explorations
are quite detailed for instance when keypads are discussed key debouncing in software is
explained in detail.

Other topics of interest are: interrupts, parallel interfacing, the serial-peripheral interface
(SPI), A/D converters, timers, the serial communications interface (SCI), fuzzy logic (the
HC12 has fuzzy logic hardware) and some topics that are limited to some HC12 parts that
have these features available : pulse-width modulation, key wakeup and programming of flash
EEPROM.

In other chapters WHYP is extended with among others flow control and branching words,
string/number conversions, and WHYP interrupt routines. (You can also write in assembler
routines and have them called from WHYP by informing the dictionary where they reside in
the kernel image).

Throughout the book, all is explained in great detail and in plain language with important
points emphasised. The mixture of assembly language and WHYP/Forth works really well in
that it gives the reader good exposure to both without requiring previous knowledge other
than the basics.

Title: Design of embedded systems using 68HC12/11 microcontrollers
Author: Richard E. Haskell
Publisher: Prentice Hall, 2000
ISBN: 0-13-083208-01
Hardback: 569 pages
Price: £68.99 (www.amazon.co.uk current price).

www.fig-uk.org Forthwrite 126 – July 2004 21

http://www.amazon.co.uk/

Henry Vinerts [Volvovid@aol.com]

Across the Big Teich

Henry Vinerts

This material was prepared for Vierte Dimension by Henry Vinerts, and printed by
kind permission of Forth Gesellschaft (German FIG).

Hello, Friederich, Fred, and Graeme!

Silicon Valley FIG Meeting – April / May / June 2004

I have little to report for the past three months. Instead of a formal meeting in April,
seven of us traveled to Bruce Damer's Ancient Oak Farm in the Santa Cruz mountains
and enjoyed the host's personally guided tour of his "Digibarn"
(http://www.digibarn.com) collection of vintage computers. I cannot write fast enough
to recount all the fascinating impressions from this visit, but you could get an idea from
the website, which, Bruce says, gets millions of visitors per year. The May meeting
conflicted with some sight-seeing trips that my wife and I took with our visitors from
the Netherlands, and in June, instead of a SVFIG meeting, those of us who are
members of the Computer History Museum (and I am not) are invited to attend an event
titled "Then and Now: Computer Graphics in Games," featuring Jordan Mechner, Rand
Miller, and Will Wright with Vince Broady. (More at
http://www.computerhistory.org/nvidia_06102004/)

Such are the "signs of life" among the Silicon Valley forthers. I may not have anything
to report until after the end of July, when regular meetings are expected to start
again.

I have been thinking that if I / we cannot find enough time or new material to write
about to enlighten our readers, perhaps it is time to dig into the archives and collect
some pearls of wisdom from the many oysters that the Forth community has produced.
Someone has said that the best compliment to an author is a quotation from his works.
What do you say if we send our readers on a search for Forth quotes, print the best in
the magazines under a ." (dot-quote) rubric, and when enough have been collected, use
them as an introduction to a book, which I would hope would be titled something like
"Understanding Forth" and not "Ending Forth"? Can anyone tell me how long it has been
since any of the big bookstores has had a Forth book on their shelves?

22 Forthwrite 126 – July 2004 Forth Interest Group UK

mailto:Volvovid@aol.com
http://www.digibarn.com/
http://www.computerhistory.org/nvidia_06102004/

Let me start with one of the most famous quotes from Chuck Moore (in the foreword to
"Starting Forth"):

"Simplicity provides confidence, reliability, compactness, and speed."

Wolfgang Allinger has already aptly translated it into German:

"Einfachheit erzeugt Vertrauen, Zuverlaessigkeit, Ueberschaubarkeit und
Schnelligkeit."

For those who may have read something interesting, but no longer have the book, I can
at least provide the attached list of the books that I own. Who knows, there may still
be a good number of lost treasures buried under the toils of all those authors?

Wishing you all a good summer,

 Henry

Attachment:

List of Henry's Forth books (\mydocuments\my eBooks\4thbooks.doc, June 2004)

1. "Starting FORTH" by Leo Brodie, 1981, Forth Inc.
2. "Starting Forth" 2nd ed., by Leo Brodie, 1987, Prentice-Hall.
3. "Dr. Dobb's Toolbook of Forth" Vol. I, 1987, M&T Books.
4. "Dr. Dobb's Toolbook of Forth" Vol.II, 1987, M&T Books.
5. "All About Forth" MVP-FORTH Series Vol.1, by Glen B. Haydon, 2nd ed., 1984,

Mountain View Press.
6. "All About Forth--An Annotated Glossary," by Glen B. Haydon, 3rd ed., 1990, MVP-

FORTH SERIES.
7. "Real Time Forth" by Tim Hendtlass, 1993, Swinburne Univ. of Technology, Australia.
8. "Thinking Forth" by Leo Brodie, 1984, Prentice-Hall (proofreading copy for 1994

edition).
9. "Using FORTH" by Rather, Brodie, Rosenberg, 2nd ed., 1980, Forth, Inc.
10. "Mastering FORTH" by Tracy & Anderson, Advanced MicroMotion, Inc., 1989, Brady

Books.
11. "FORTH: A Text and Reference" by Kelly & Spies, 1986, Prentice-Hall.
12. "Introduction to FORTH" by Ken Knecht, 1982, Howard W. Sams.
13. "The Complete FORTH" by Alan Winfield, 1983, Sigma/Wiley.

www.fig-uk.org Forthwrite 126 – July 2004 23

14. "FORTH-79" ver. 2, Z-80 CP/M edition, by Anderson & Tracy, 1982, MicroMotion.
15. "Discover FORTH" by Thom Hogan, 1982, Osborne/McGraw-Hill.
16. "Learning FORTH--A Self-teaching Guide" by Margaret Armstrong, 1985, John

Wiley.
17. "Threaded Interpretive Languages" by R.G. Loeliger, 1981, Byte Books.

As always, Henry shows his unique insight into the language and philosophy of Forth. What
books do other members have by their computer / on the bedside table for reference, instruction or
inspiration? Send in your “dot-quotes” to the editor via the usual channels.

In a recent email Henry expressed his delight on receiving his FIG UK Achievement Award, “I feel
as if I had just been knighted by the Queen. Thank you all who contributed to such a delightful
surprise for me”. Don’t let it go to your head and forget us commoners, Henry! We look forward to
reading your next report from Silicon Valley.

– Editor

What Languages Fix
Back in Issue 122 an observation on programming languages was taken from the web page of
Paul Graham, author and designer of the Arc language (http://www.paulgraham.com/fix.html) and
the question “what problem does Forth fix?” was posed.

Here are some of the contributions from readers:

From James Boyd:

• Forth doesn't “tie my hands”.

Chris Jakeman found the following on the ‘net:

• Forth: assembly language should be interactive and extensible. – John Passaniti

• Forth is postfix – Al Todd

• Forth: assembly syntax is scary. – Michael Gassanenko

• Forth: FORTRAN is not interactive, and Chuck's pre-Forth interpreter was not
extensible. – Bernd Paysan

• Forth: OS built on files are too big and slow for a decent database. – Jeff Fox

• Forth: all that scary stuff is not needed. – Michael Gassanenko

• Forth: fixes the megasoftware problem. – Charles Moore.

24 Forthwrite 126 – July 2004 Forth Interest Group UK

http://www.paulgraham.com/fix.html

Dutch Forth Users Group

Reading Dutch is easier than you might think. And as Forth is an
international language, reading Dutch code is easier still for a Forth

enthusiast. Are you interested? Why not subscribe to

HCC-Forth-gebruikersgroep

For only 10 euros a year (about £6.70), we will send you 5 to 6
copies of our "fig-leaf" broadsheet 'Het Vijgeblaadje' . This includes
all our activities, progress reports on software and hardware projects

and news of our in-house products.

To join, contact our Chairman:
 Willem Ouwerkerk
 Boulevard Heuvelink 126
 6828 KW Arnhem, The Netherlands
 E-Mail: w.ouwerkerk@kader.hobby.nl

The easiest way to pay is to post a 10 euro note direct to Willem.

www.fig-uk.org Forthwrite 126 – July 2004 25

Joe Anderson [jia@jia.abel.co.uk]

 phone: 0131 662 4007

Vierte Dimension 1/2004

Joe Anderson

Joe provides a look at the latest issue of the German FIG
magazine.

Editorial. 4

Friederich Prinz
[vd@forth-ev.de]

Friederich draws attention to the current Jubilee celebration (20 years
of the Forth-Gesellschaft). He recalls the beginnings from his own life:
NAXOS (a Forth compiler programmed in Turbo-Pascal), TCOM
(under ZF and F-PC) from Tom Zimmer and HOLON from Wolf
Wejgaard. He admits that even today he likes working in the
venerable and trusted DOS environment, which also allows him easy
access to Lego-RCX.

Readers' Letters. 5

 Readers' letters from: Michael Kalus (Celebration committee,
Conference on Fehmarn), Rafael Deliano (working with graphics),
Carsten Strotmann (KNOPPIX-Linux-Forth CD), Ulrich Paul (Operator
overloading in Forth too), Ulrich Paul (the future of Forth), Wolf
Wejgaard (HOLON86).

Book Review. 7

Friederich Prinz

Friederich Prinz reports on the book "Extreme Mindstorms" by Baum,
Gasperi, Hempel, Villa: pbForth, NQC (Not Quite C), LegOS and many
tips for DIY Lego-RCX.

Ushi-Tag in Maarssen. 8

Friederich Prinz Ushi is a DIY robot from the Dutch Forth fans, programmable in AVR-
ByteForth. Martin Bitter and Friederich Prinz were guests at the robot
gathering in the neighbourhood of Utrecht.

A Solution to the "Fours" Problem, programmed in Forth. 9

Ewald Reiger
[Ewald.Rieger@t-
online.de]

The numbers from 1 to 50 are to be produced using nothing but the
numeral 4 and a few basic mathematical functions. A few further
questions were posed. The problem was sent via e-mail by Henry
Vinerts to Fred Behringer. Ewald solves the problem in elegant Forth
style through complete enumeration in a tree structure.

Advertisements 13
 Notices regarding membership adverts for FIG UK and the Dutch

Forth-gebruikersgroep.

26 Forthwrite 126 – July 2004 Forth Interest Group UK

mailto:jia@jia.abel.co.uk

Cyclic swap not allowed. 17

Friederich Prinz

Friederich presents a solution to a problem set by Arndt Klingelnberg
in 1994. The values of two variables are swapped without calling on
the assistance of a third variable. Preview for the (already appeared)
Vierte Dimension 2/2004: Ulrich Paul will mention XOR. Preview for
(an article already submitted to) Vierte Dimension 3/2004: Fred
Behringer will give an exhaustive mathematical analysis (XOR and
other possible functions).

Mail from Henry. 18

Henry Vinerts Henry's report on the SVFIG meeting on 22nd November 2003, in the
translation by Thomas Beierlein. The original reports also appear in
Forthwrite.

UART-Controller for HOLON-Forth. 20

Friederich Prinz Friederich gets to grips (yet again) with Lego-RCX and has developed
a driver for the serial linking of RCX to HOLON-Forth by Wolf
Wejgaard. He will send the data on request to anyone interested.

A Virtual Non-deterministic Machine in Forth. 27

James A. Boyd Translation of the first part of an article that appeared in Forthwrite
123. Michael Kalus undertook the translation. With comments from
Friederich Prinz, Bernd Paysan, and Fred Behringer.

Managing Dosemu and HOLON. 30

Martin Bitter Dosemu is a DOS-emulator that runs under Linux and permits the
super-user access as well to e.g. the RS232 interface of the PC. Martin
works in co-operation with Fritz and Wolf (see above). Martin gives
exact instructions for getting dosemu from the Internet and for co-
ordinating dosemu-Linux-HOLON-RCX.

Review. 32

Fred Behringer Fred Behringer reports on Forthwrite 123.

Simple Logarithms. 33

Rafael Deliano In dynamic compression binary logarithms are needed in only quite a
rough approximation, but using a very large word size. A very rough
approximation is given by the most significant bit that is set. Rafael
outlines refinements of the "very rough approximation" that can be
quickly implemented.

Hamilton and Euler. 34

Fred Behringer Fred's answer to a question of Michael Kalus' on the Travelling
Salesman Problem, the Knapsack Problem, and other items with
respect to Michael's translation of James Boyd's virtual deterministic
machine article (see above).

www.fig-uk.org Forthwrite 126 – July 2004 27

FIG UK Contacts and Information

Chairman Jeremy Fowell, 11 Hitches Lane, EDGEBASTON B15 2LS
0121 440 1809 jeremy.fowell@btinternet.com

Secretary Douglas Neale, 58 Woodland Way, MORDEN SM4 4DS
020 8542 2747 dneale@w58wmorden.demon.co.uk

Editor Graeme Dunbar,
(temporary)

School of Engineering, The Robert Gordon
University, Schoolhill, ABERDEEN AB10 1FR
01224 262415 g.r.a.dunbar@rgu.ac.uk

Treasurer Neville Joseph, Marlowe House, Hale Road, WENDOVER HP22 6NE
01296 62 3167 naj@najoseph.demon.co.uk

Webmaster Jenny Brien, Windy Hill, Drumkeen, BALLINAMALLARD,
Co. Fermanagh BT94 2HJ
02866 388 253 webmaster@figuk.plus.com

Librarian Graeme Dunbar, School of Engineering, The Robert Gordon
University, Schoolhill, ABERDEEN AB10 1FR
01224 262415 g.r.a.dunbar@rgu.ac.uk

Membership enquiries, renewals and changes of address to Douglas.
Technical enquiries and anything for publication to Graeme.
Borrowing requests for books, magazines and proceedings to Graeme.

For indexes to Forthwrite, the FIG UK Library and much
more, see http://www.fig-uk.org

y

m
f

m

2

FIG UK Web Site
Payment entitles you to 6 issues of Forthwrite magazine
FIG UK Membership

and our membership services for that period (about a

ear). Fees are:

National and international £12
International served by airmail £22
Corporate £36 (3 copies of each issue)

Your membership number appears on your envelope label.
Please quote it in correspondence to us. Look out for the

Forthwrite Deliveries
essage "SUBS NOW DUE" on your sixth and last issue and please complete the renewal
orm enclosed. Overseas members can opt to pay the higher price for airmail delivery.

Copyright of each individual article rests with its author.
Copyright

Publication implies permission for FIG UK to reproduce the

aterial in a variety of forms and media including through the Internet.

8 Forthwrite 126 – July 2004 Forth Interest Group UK

mailto:jeremy.fowell@btinternet.com
mailto:dneale@w58wmorden.demon.co.uk
mailto:naj@najoseph.demon.co.uk

FIG UK Services to Members

Magazine Forthwrite is our regular magazine, which has been in publication for
over 100 issues. Most of the contributions come from our own
members and Graeme Dunbar, the Editor, is always ready to assist
new authors wishing to share their experiences of the Forth world.

Library Our library provides a service unmatched by any other FIG chapter.
Not only are all the major books available, but also conference
proceedings, back-issues of Forthwrite and also of the magazine of
International FIG, Forth Dimensions. The price of a loan is simply the
cost of postage out and back.

Web Site Jenny Brien maintains our web site at http://www.fig-uk.org. She
publishes details of FIG UK projects, a regularly-updated Forth News
report, indexes to the Forthwrite magazine and the library as well as
specialist contributions such as “Build Your Own Forth” and links to
other sites. Don’t forget to check out the “FIG UK Hall of Fame”.

IRC Software for accessing Internet Relay Chat is free and easy to use.
FIG UK members (and a few others too) get together on the #FIG UK
channel every month. Check Forthwrite for details.

Members The members are our greatest asset. If you have a problem, don’t
struggle in silence - someone will always be able to help. Do
consider joining one of our joint projects. Undertaken by informal
groups of members, these are very successful and an excellent way
to gain both experience and good friends.

Beyond the UK FIG UK has links with International FIG, the German Forth-
Gesellschaft and the Dutch Forth Users Group. Some of our
members have multiple memberships and we report progress and
special events. FIG UK has attracted a core of overseas members;
please ask if you want an accelerated postal delivery for your
Forthwrite.

Copy deadlines:
Issue 127: 18 August 2004
Issue 128: 27 October 2004
All material for publication to the Editor by email or post by that date please. Plain text, MS
Word or Rich Text format preferred.

www.fig-uk.org Forthwrite 126 – July 2004 29

Back cover (Advert)

30 Forthwrite 126 – July 2004 Forth Interest Group UK

	Forth News
	Debugging Tools
	Debugging tools
	Implementation dependencies
	Miscellaneous
	Stack checking
	Assertions
	Editing the Article
	Original Source Code

	Certifying your Code
	Inspection
	Function Test
	Limits Test
	Programming Surfaces
	Summary

	Letters
	A VNM in Forth: update
	Errata
	Regions: into unknown Win32Forth, by David R. Pochin

	Book Review
	Across the Big Teich
	What Languages Fix
	Vierte Dimension 1/2004
	Editorial.4
	Readers' Letters.5
	Book Review.7

