

 ISS 0265-5195

news people reviews projects programming

March
2003

Issue 120

FIGUK magazine:

Sorting a List
nnCron

Across the Big Teich
F11 UK Hardware Project

Forth and the Neuron Chip

 1

 1

euroFORTH 2003 24

Forth News 3

Feedback on Forth Code Index

.. 20

nnCron 26

Across the Big Teich 29

Sorting a List 11

Presenting The FIG UK Awards of 2002

.. 28

Forth and the Neuron Chip ... 5

FIG Hardware Project 9

news

reviews

programming

people

events

March
2003

Issue 120

projects

 2

Editorial
Welcome to new members Stephen Hayes,
Anton Mans and Alan York. There's lots

going on in Forth right now and FIG UK continues to play a
substantial role. euroFORTH is back in the UK this year and this
time FIG UK is getting involved – see details in this issue.

As well as the usual free Forths, Forth News includes a healthy
list of new Forth Resources in this issue such as tools for
accessing the Internet.

Look out for the first items in our new Forth Inside series – In
the first one, we've managed to pull together some inside
information on a well-hidden Forth story. There's quite a backlog
of potential candidates for this series.

Sorting A List is a tutorial article. The original was written using
MS Word as an experiment to combine code, comment and
graphics in the same document. Our A5 format is a bit tight but
it works well at A4. Expect to see more about this in due course.

Finally, congratulations to the winners of our FIG UK Awards
2002.

PS. Don’t forget the monthly IRC session. Our next one is
Saturday 5th April on the IRC server called “IRCNet”, channel
#FIGUK from 9:00pm.

Until next time, keep on Forthing,

 3

Forth News

Forth Events
euroFORTH 2003 will be held on 17th-
19th October, in Ross-on-Wye, England.

Forth Resources

"Ugly Home Page" Returns
Neil Bawd has resurrected his famous web
page which now includes 57 Forth code
samples, some with tutorials. These include
recursive and non-recursive versions of
Quicksort.

Tools for Blocks
Gary Chanson posted a couple of tools for
dealing with DOS-based block files.

One is a full featured block editor which
supports multiple files, multi-file search and
replace with regular expressions, and a lot
more.

The second is a pair of programs which do
smart conversion of block files to text files
and text files to block files.

See:

http://www.mvps.org/ArcaneIncantations/fort
h.htm

comp.lang.forth by email
Sam Tardieu has set up a public email
gateway at
http://ada.eu.org/mailman/listinfo/
comp.lang.forth

This service will send comp.lang.forth
postings to you as they arrive or collected
into a digest and will post your emails
messages back to the newsgroup.

Tools for Internet
Marcel Hendrix (author of iForth) has
made available a set of Internet-related
tools. To any Forth that can access
sockets, the tools add examples for
posting email, fetching email and news,
telnet and using http to get web pages.

See
http://home.iae.nl/users/mhx/pipes&socks.
html

MacForth Forum
MegaWolf have announced the opening of
a public forum for discussion of its own
MacForth and any other Mac-related
topics such as MOPS Forth. There are a
number of advantages in using this forum
over Usernet, such as avoiding spam and
harvesting of email addresses.

See http://macforth.com/discussion.html

 4

Forth Scientific Library
The FSL needs a new team leader to
continue Skip Carter's renowned efforts.
Charles Montgomery, who has been a
major contributor to the FSL, has offered
his services "I do have some time available
for helping with such an effort, do favor the
concept and practices of the FSL as
initiated by Skip, and am willing to try to
help out in any way that 'the Community'
would find useful."

Machine Characteristics in kForth
W.J.Cody published MACHAR - routines
for finding the mathematical characteristics
of a computer in a portable way - such as
the largest integer.

David Williams has ported these to ANS
Forth, see http://www-
personal.umich.edu/~williams/archive/com
putation/dir.html

Krishna Myneni has ported these also to
kForth at
http://ccreweb.org/software/kforth/kforth4.ht
ml

Big Number Packages
Marcel Hendrix has made available
Perfectly Scientific's GiantInt library in
addition to the older bignum.frt based on
Knuth. Both provide routines for large
integer arithmetic and number theory.

Big numbers are mainly used in
factorization of large (prime) numbers.
Encryption and privacy are areas that
indirectly depend on efficient factorization
techniques.

Non-commercial
Systems

New version of 4th
Hans Bezemer has upgraded 4th to v3.3d
which now includes versions for 32-bit
Windows as well as DOS and Linux.
There are new words (eg DEFER) and
multiple files/pipes can be used at once.

4th may
be used as a standalone system or
integrated with C, for example to provide
scripting. It comes with extensive
documentation and excamples, is close to
ANS and, uniquely, claims to be
crashproof.

Enth v0.4 released
Enth is a near-ANS multi-tasking Forth
placed in the public domain by Sean
Pringle. Unusually, it is standalone and
does not require an operating system.

Enth is block-based and shadow blocks
are available for comments. Like Chuck
Moore's ColorForth, Enth uses colour to
specify how words are to be interpreted.

See http://www.ynet.com.au/sean/

 5

MinForth released
Andreas Kochenburger has published a
small ANS Forth for DOS, DOS with
DPMI, Windows and Linux. It is simple
and portable, using a minimal amount of C
code to implement the Forth virtual
machine. It is robust, containing many
crash-proofing features and also has a
small interface to the Windows API. See
http://home.t-
online.de/home/andreas.kochenburger/

GForth will be faster
Bernd Paysan reports that the next version
of Gforth will use dynamic
superinstructions as well as conventional
threaded code for extra performance. It
will continue to be entirely ANS-
conforming. Two papers on
superinstructions were presented at
euroFORTH 2002, see
http://dec.bournemouth.ac.uk/forth/euro/ef
02.html and one at euroFORTH 2001.

kForth updated to v1.0.13
The Windows version is now compatible
with the Linux version. Both executable
and source packages are available for
download from:
http://ccreweb.org/software/kforth/kforth.htm
l

Commercial Systems
nnSoft have announced new versions of
nnCron, nnCron LITE and nnBackup (see
page 27 in this issue). nnCron runs
unattended to start applications, display
messages, dial and hang up, shutdown/
hibernate and wake up your PC, manage
clipboard/files/registry and much more.

It is managed with easy-to-edit text
crontab files and has a convenient
graphical shell which can be used to
remove, add, edit and run tasks, set up
reminders and change program settings.

New features include the power-saving
management and extensive documentation
in English.

Planned Articles
We expect to publish items on the following topics
shortly:

§ Forth at the Joint European Torus (JET)
§ Robust Interfacing
§ Anaesthetic Dispenser

 6

 Forth and the Neuron
Chip

Chris Jakeman and Bill Powell

Echelon's aim is to "be the worldwide standard for networking devices and systems
together in buildings, homes, and utilities". With annual sales around $120m, a
worldwide distribution network, and recognition by major standards bodies,
Echelon looks close to achieving its objective.

Since its introduction in 1988, Echelon's technology
solution—the LonWorks system—has been adopted by
thousands of device and system manufacturers. Millions
of connected LonWorks devices have been installed into
buildings, factories, trains, homes, planes, and hundreds
of other applications worldwide.

In a recent deal, industry giant Honeywell committed to
"produce Echelon-based products for primary and
secondary HVAC1 plant controllers".

A striking application from Echelon's files is found
in the Emirate Towers nearly 60 stories high, one
an office and the other a hotel and shopping mall,
where the aim is to "create the most advanced and
sophisticated office accommodation within the
Arabian Gulf". The lighting, HVAC and security
systems are all networked with LonWorks. Because
the lights are networked they can be re-organised
without re-wiring whenever the office partitions are
moved and come on automatically in the event of
an alarm.

LonWorks also controls the lighting panels which
make the building so attractive at night.

1 HVAC: Heating, ventilation and air conditioning

Echelon Corporation was
founded and is still run today by
CEO Mike Markkula, best known
as one of the three founders of
Apple. He held a variety of
positions there, including
Chairman, President/ CEO and
Vice President of Marketing.

Forth is often the vital but invisible
core of a product, and its
contribution is recognised only by
a few. This is the first of a series of
"Forth inside" articles which
reveals the use of Forth
technology around the world.

Over 20 years, Echelon Corporation of California
(http://www.echelon.com) have built a world-wide

business based on LonWorks technology - a
special processor coupled with capable

networking software. Our research has identified
the Forth roots in this successful product.

 7

A key element of the LonWorks solution is the network technology. The LonWorks
protocol is specially engineered to suit control systems, follows the 7-layer
ISO/OSI (Open Systems Interconnect) model, is a published ANS standard and
allows two devices to communicate without needing to know anything about the
topology of the network. Its advanced services include the ability to download a
new application program across the network.

The software which implements this
protocol is embedded into LonWorks
devices, so anyone building an
application will have the protocol
available to minimise the size and
complexity of their software.

LonWorks employs peer-to-peer
connectivity rather than the traditional
hierarchical approach. This has many
advantages (eg. simpler design, no
single point of failure) but as the same
intelligence must be provided in each
connected device, it is important to
provide that intelligence cheaply and
reliably. Which is where the Neuron Chip comes in.

The Neuron chip was originally sourced from Motorola and is now made by both
Toshiba and Cypress. In its current incarnation, it uses 0.35 µm Flash technology
to provide three identical 8-bit processors which run at 10 or 20MHz and is
available as a family of devices of different sizes. Some 24 million Neuron Chips

had been installed so far, some
as cheaply as $3 each.

Each Neuron Chip is given a
permanent unique-in-all-the-
world 48-bit code. The three
processors run in parallel,
sharing the ALU
and memory bus, and
essentially provide three
parallel hardware tasks
dedicated to the CSMA
protocol (see box), the higher
layers of the ISO model and
lastly the user application.

Each CPU has a byte-oriented

data stack and a return stack which grow towards each other. This architecture is
classical Forth and was chosen as it provides high code density. Since the user's
application uses on-chip EEPROM memory, and this type of memory is the most

Predictable Performance using CSMA
A key feature of the LonWorks network
protocol is the ability to work robustly under
overload conditions, such as may be
experienced in an emergency. LonWorks
achieves this, in contrast to the best known
CSMA protocol - Ethernet, by providing
"priority" messages, "predictable" messages
and message acknowledgement. See
http://www.echelon.com/Support/documen
tation/Bulletin/005-0060-01A.pdf for
details.

 8

expensive in terms of die area per bit, it's important to have compact programs. As
Harold Rabbie of Toshiba puts it, "Some of our chips have as little as ~300 bytes
of EEPROM space for the user. Believe it or not, you can write code for a fully-
functional analog sensor device in 100 or so bytes. The compiler largely generates
compact calls to the hand-tuned firmware in the on-chip ROM."

Although the Neuron Chip is a triple Forth processor, no-one has yet built a Forth
development system for it. Instead, the rather expensive LonWorks compiler
implements C (ANS with 3 extensions). The 256 instruction set includes classic
Forth instructions like DROP but is not published by Echelon. The company does
not want to support machine-level programming and have never released an
assembly-level debugger or any of the documentation needed to program at that
level.

The reason is that the Neuron Chip isn't a bare piece of silicon, but has ~16KB of
embedded firmware in ROM that is tightly coupled with the compiler code
generator.
That allows the developer to write C programs to do embedded I/O and
networking without having to know any of the details of the implementation.

Implementing a Forth system is made more complicated as this firmware has
"about 400 entry points in it, without any published documentation. Programming
on the bare silicon is not an option either - you would lose all of the 7-layer
networking functionality implemented in the firmware."

In conclusion, 24 million Neuron Chips have been sold so far, using Forth-style
technology. However, the Forth-style instruction set is unreleased and, for good
marketing reasons, only a C programming interface is provided for the application
user. Forth continues to remain a well-hidden secret.

With acknowledgements to Vincent Pawlowski for his valuable information and reviewing the
text.

 9

F11-UK
FIG Hardware Project

The F11 UK mailing list continues to promote this board and extensions
for it.

After something of a pause during the autumn, considerable activity was kicked off
by a query from Garth Wilson (previously a member of USA FIG).

Graeme Dunbar organised an
anonymous web-based poll to
discover how users of the F11-UK
kit have progressed.

Jeremy Fowell proposed the next
step should be a range of
Extender Boards, for example
providing a real-time clock which
could be used for logging
purposes.

The first board would provide
extra digital I/O and a socket to
plug in custom prototype boards.
Input is also being received from
Paul Atkerstam, Boris Fennema,
Mike Trueblood and Philip Eaton.

Graeme has shared details of comparable boards designed at the Robert Gordon
University.

This mailing list is open to anyone who has an interest in applying Forth to
hardware and is not limited to FIG UK members, so feel free to "lurk" or even join
in.

§ My F11-UK board is working and I have been

programming it.
§ My board is running but there are still some

bugs in it.
§ The hardware is complete or nearly complete,

but there are major software problems.
§ The board has been assembled, but is faulty as

far as I can tell.
§ I have an unassembled or partly assembled

board.
§ I do not have a kit but am thinking of getting

one.
§ I'm interested, but don't have the tools etc to

make one.
§ I do not intend to get a kit as I have just a

general interest in the subject.

 10

provides everything needed in a
professional-quality low-cost Forth
controller board.

Use it in industrial or hobby
projects to control a wide range of
devices using the well-known multi-
tasking Pygmy Forth.

Designed for hosting from a Windows
or DOS PC, you can test your
application as it runs on the F11-UK
board itself. The board was developed
by FIG UK members to provide an easy
way to explore the world of controlled
devices – a niche where Forth excels.

The kit includes both hardware and
software and is supported and sold to
members at a nominal profit through a
private company.

Software

PC-based PygmyHC11 Forth compiler
running under DOS produces code for
Motorola HC11 micro-controller.

Code is downloaded via standard serial
link from the PC to the FLASH memory (or
RAM) on the F11-UK single board computer
(SBC).

No dongle or programming adaptor of any
kind is required.

Forth running on the SBC is interactive
which makes debugging and testing much
easier.

Multitasking and Assembly included.

The serial link can be disconnected to
enable the SBC to function as a stand-alone
unit.

All source code provided - 78 pages
or so (unlike many commercial
systems).

Around 30 pages of additional
documentation is supplied including a
full glossary of the 300 or so Forth
words in the system.

Email mailing list for discussion and
limited support.

Hardware:

Processor:
 Motorola HC11 version E1 - 8 MHz (2
 MHz E-Clock).
Memory:
 32k x 8 FLASH
 32k x 8 battery backed SRAM
 512 x 8 EEPROM onboard HC11.
I/O:
 20 lines plus 2 interrupts (IRQ & XIRQ).
Analogue in:
 up to 8 lines using onboard 8-bit A/D.
Serial:
 1. RS232, UART onboard HC11

 2. Motorola SPI bus onboard HC11.
Expansion:
 Via HC11 SPI serial bus using
 2 or more of 20 available lines.
Timer system:
 Inputs: 3 x 16-bit capture channels
 Outputs: 4 x 16-bit compare channels.
PCB size: 103 x 100 mm.

Price to FIG UK members: £47.0 plus postage and packing (£2 UK, £4 overseas) plus $25.0 (US

Dollars) for registration of 80x86 Pygmy Forth with the author Frank
Sergeant.

 Delivery: ex-stock.
 More information: jeremy.fowell@btinternet.com and 0121 440 1809

F11-UK

 11

Sorting a List
Chris Jakeman

This article began as a short reply to help a member new to Forth. Once started, it grew into an
experiment in using a programmable word processor for editing and documenting source code.

The original request was

“I can see how you build data arrays but how would you operate on a
single linked list ?”

which led to the following reply

“There's quite a lot of Forth material on lists. For example, Forth
Dimensions ran a series from Neil Bawd called Stretching Standard Forth
which includes Linked Lists (July 97 p20). Dick Pountain's book Object-
Oriented Forth (from FIG UK Library) is as much about data structures as
about OOF and Chapter 3 is entirely devoted to lists.

Forth provides so much freedom that it becomes seductive. I can point
you to several fascinating articles about doing clever things with lists
- eg. OOF classes to develop lists and trees or rings used to implement
lists, queues and sets. However I cannot find an article devoted to
working with straightforward lists using ANS Forth. Neither can I find
anything suitable in the on-line tutorials.”

and the final project brief

“Thanks for the speedy and detailed reply. Currently I have a simple
"sorting of list" application in mind - I want something small as a test
case for myself. I basically would like to read a list of integer values
off the stack and insert them into a list - sort them and output them
later. Next stage would be to change the integer for string pointers and
sort the strings.”

The aim of this article is to present a sound basis for working with lists of data. We assume
that anything we do here with integer data, we can also apply to more complex data
elements. We also assume that clarity is more important than performance. For example
assertions are included where appropriate. These prevent errors but also document the
conditions that the programmer has to satisfy if he is to rely on a word’s behaviour.

The commentary shows how the code grows, and replaces simple words with more
complex ones in order to achieve the desired functionality.

Notes:

- The original article uses a dark green colour for the comments.

- The macros used to extract the source code from the document may be published in a
later article.

- Thanks to FIG UK members Graeme Dunbar and Leo Wong for their feedback. Any errors
are entirely mine.

 12

\ LIST.FTH
\ 2002-01-19  Chris Jakeman

(Sorting a list of integers
We first move values from the stack into a single linked list called Unsorted. We
then move the top value from Unsorted into the right position on a second list called
Sorted.
 This algorithm is called Insertion Sort and is like sorting a hand of playing cards.
While there are faster ways to sort integers than using lists, this technique can also be
used for objects of varying size, such as strings.
)

(Structure of a singly-linked list
A singly-linked list is sufficient for the purpose. Working with the list is much simpler if
none of the nodes in the list is a special case. The way to avoid this is for the address of
the list to be not the first node of the list but rather a pointer to that first node. Also, the
field that links to the next node needs to lie at the start of each node. We use 0 to
indicate the end of the list.

Also, with this structure, any word that operates on the whole list can also operate on the
tail of the list.
)

Sorted
12

14

Unsorted
28

32
15 28 30

&FirstNode List

&NextNode data First Node

&NextNode data NextNode

0 data LastNode

 13

anew [LIST-MANAGEMENT] \ --

Forth Style

Names
Forth allows punctuation characters in word names; Alpha? is common instead of
IsAlpha and >Value instead of ToValue. By default, the scope of all words is global, but
simple extensions are available providing scope local to a module or a single word.

I try to use nouns as names for words that add a value to the Data Stack (eg constants and
variables) and verbs otherwise.

Variables
Avoid giving names to values - pass them on the stack whenever this is convenient. This
example needed no variables at all.

Parameters
Words usually consume their arguments. Accompany each : ... ; word with a comment
listing its overall stack behaviour, eg: : + (n m –- n+m) With very few exceptions
(?dup is a useful one), this documented behaviour should not depend on the input data.

Definitions
For many good reasons, words should be short and encapsulate a single idea. In
NodeDetach below, the word NodeUnlink has been identified and factored out just to
make the code more readable. You can also improve readability by giving a single phrase a
line to itself.

Macros
A macro is merely an abbreviation for a text string and macros are used here to repeat
common patterns for the loop that traverses a list.

anew <name> has a single but useful purpose,
to restore your Forth dictionary to the state it
was in last time anew <name> was interpreted.
Put this at the beginning of your source. Then,
when you edit your source, simply re-load it and
anew will remove the old source for you.

anew takes the place of the older forget

[if] ... [then] changes the
source interpreted at compile-
time. [if] takes a value of the
Data Stack so 0 [if] skips all
the text to the next [then].

[if] ... [then] can be nested.

 14

0 [if] \ Glossary
2 cells constant >Node< \ 1 cell for the link and 1 for value
: >Link (&Node -- &Link) \ Offset from address of node to link field
: >Value (&Node -- &Value) \ Another offset, read the name as ToValue
: NodeMake (Value -- &Node) \ Make an anonymous node and store Value
: ListCreate (-- ++) \ Make a named list from the next word in the
 \ source.
: NodeAdvance (&Node -- &NextNode) \ Advances from one node to the next
: NodeInsert (&NodeToInsert &PriorNode --)
 \ Insert a single node into a list
ListCreate Unsorted \ Initial list of nodes
ListCreate Sorted \ Final list of nodes
: NodeUnlink (&Node -- &NextNode|0) \ Stop node pointing at its successor
: NodeDetach (&PriorNode -- &NodeDetached)
 \ Remove a single node from a list
: NodeShow (&Node --) \ Show details of a node
: Macro : \ Use as Name " text " . The word Name will
 \ be replaced by the text
\ Pair of macros to visit all nodes of a list.
macro ListVisitAll(" begin NodeAdvance ?dup while >r " (&List --)
macro)ListVisitAll " r> repeat " (--)
: ListShow (&List --) \ Show all nodes in list,
\ Pair of macros to search the nodes of a list and exit with the node before the
\ matching node.
macro ListExitBefore(
 " dup 2>r begin r> r> drop dup NodeAdvance 2>r r@ while "
macro)ListExitBefore " until then 2r> drop "
: NodeFindBefore> (n &List -- &Node)
 \ Finds the node before the first node greater than n.
: NodeMove (&FromPriorNode &ToPriorNode --)
 \ Move a node from one place on a list to
 \ another place on the same or another list.
: NodeSort (&PriorNode &TargetList --)
 \ Insert a node into the TargetList
: ListSort (&UnsortedList &SortedList --)
 \ Move UnsortedList nodes into
 \ sequence in SortedList
: ShowLists (--)
: Try (--) \ TESTING: Finally test the whole sort routine
[then]

Glossary
It is customary and helpful to provide a glossary of each module containing all the words
exported from that module. This glossary is usually extracted from the source
automatically.

 15

\ Define the list ---

: ListCreate (-- ++) \ Make a named list from the next word in the
 \ source.
 create 0 , \ List will return address of pointer to first
 \ node, but initially empty.
 does> (-- &List) \ does> makes action clear but is not strictly
 \ necessary.
;

\ Define the node ---

2 cells constant >Node< \ 1 cell for the link and 1 for value
 \ >Node< is my short-hand for size of node

: >Link (&Node -- &Link) \ Offset from address of node to link field
 \ Read the name as ToLink
 \ Does nothing, provided for readability
; immediate \ This ensures there is no run-time cost.
: >Value (&Node -- &Value) \ Another offset, read the name as ToValue
 cell+
;
: NodeMake (Value -- &Node) \ Make an anonymous node and store Value
 >r \ I use >r and r> instead of swap if it's
 \ easier to read.
 >Node< allocate abort" Heap exhausted" \ Make space for node
 \ and get address
 0 over >Link ! \ Ensure link points nowhere
 r> over >Value ! \ Store the Value
;
: NodeAdvance (&Node -- &NextNode) \ Advances from one node to the next
 >Link @ \ Does little, provided for readability
;

ListCreate has similar behaviour to variable but documents what’s
happening and also ensures that the initial value is 0.

Each node links to the next one and also contains a single element of data, in this case an
integer.

 16

\ Tools for working with nodes and lists ----------------------------

\ Design Note:
\ When working with a singly-linked list, it is often necessary to start from the node
\ before the one of interest. See NodeInsert below.

: NodeInsert (&NodeToInsert &PriorNode --)
 \ Insert a single node into a list after the PriorNode.

 \ The following line is an optional assertion.
 over NodeAdvance abort" NodeInsert: Node to insert is not single"

 2dup >link @ \ Get node pointed at. 2dup is same as over over
 swap >link ! \ Point the inserted node at it
 >link ! \ Attach inserted node
;

0 [if] \ TESTING: At this point, we could create some nodes and attach them to
 \ a list, eg:
ListCreate Unsorted \ Initial list of nodes
ListCreate Sorted \ Final list of nodes

10 NodeMake Unsorted NodeInsert
12 NodeMake Unsorted NodeInsert
14 NodeMake Unsorted NodeInsert
30 NodeMake Unsorted NodeInsert
28 NodeMake Unsorted NodeInsert
32 NodeMake Unsorted NodeInsert
15 NodeMake Unsorted NodeInsert
13 NodeMake Unsorted NodeInsert
11 NodeMake Unsorted NodeInsert
[then]

Assertions (as above) are usually configured so that they can be included or excluded
at compile-time using words like \Assert ... or Assert(...)Assert

 17

: NodeUnlink (&Node -- &NextNode|0) \ Stop node pointing at its successor
 >link dup @ \ Get &NextNode
 0 rot ! \ Unlink it from Node
;
\ Note that the parameter is a prior node. The node prior to the first node is the list
\ itself.
: NodeDetach (&PriorNode -- &NodeDetached)
 \ Remove a single node from a list

 \ The following line is an optional assertion.
 \ Skipping assertions at compile-time is simple.
 dup NodeAdvance 0= abort" NodeDetach: Node is missing"

 >Link >r \ Stash &Link pointer
 r@ @ \ Get &Node to detach
 dup NodeUnlink \ and any node it points at.
 r> ! \ Join up list again.
;
: NodeShow (&Node --) \ Show details of a node
 cr
 dup . \ Show address
 >value @ . \ and value.
;

0 [if] \ This definition is revised later.
: ListShow (&List --) \ Show all nodes in list
 begin \ Eg. Use Unsorted ListShow to print list
 NodeAdvance
 ?dup while
 dup NodeShow
 repeat
;

Unsorted ListShow \ Example of use

 18

\ Same as ListShow, but moves the current node onto the Return Stack to keep
\ the Data Stack clear. We are about to use this word as the basis for a pair of
\ macros and access to the Data Stack may be needed.
: ListShow2 (&List --)
 begin
 NodeAdvance
 ?dup while
 >r
 r@ NodeShow
 r>
 repeat
;
[then]

: Macro : \ Use as Name " text " . The word Name
 \ will be replaced by the text
 char parse \ Use ' text ' instead if text contains "
 postpone sliteral
 postpone evaluate
 postpone ; immediate \ immediate so macros can be used inside
 \ and outside definitions.
;

\ Pair of macros to visit all nodes of a list (based on ListShow2 above.)
macro ListVisitAll(" begin NodeAdvance ?dup while >r " (&List --)
macro)ListVisitAll " r> repeat " (--)
\ Between macros, use r@ to access current node

: ListShow (&List --) \ Show all nodes in list,
 \ eg SortedList ListShow
 ListVisitAll(r@ NodeShow)ListVisitAll
;

This loop is a common construct and we can factor it out into
a pair of macros. These macros will package up the loop so
that ListShow becomes simply:
 ListVisitAll(r@ NodeShow)ListVisitAll

Similarly, you could count the number of entries in a list using:
 0 swap ListVisitAll(1+)ListVisitAll

You can find the address of the last node of a list using:
 dup ListVisitAll(drop r@)ListVisitAll

The advantages of using macros are more evident later, when
we add some to search through the list.

Looking ahead, we will need to search the list and exit the loop as soon as a match has been
found. Initially, we return the node containing the value that matches as in NodeMatch below.
Once again, we use the Return Stack in order to keep the Data Stack clear.

If no node matches, then NodeMatch returns a value of 0.

 19

0 [if] \ Sample code as basis for macro ListExitAt
: NodeFind (n &List -- &Node|0) \ Find the Node in List with value = n
 >r
 begin
 r> NodeAdvance >r
 r@ while \ While list not exhausted
 dup r@ >Value @ = \ Compare with n
 until \ Match found
 then \ List exhausted, node not found
 r> nip
;

\ Pair of macros to search the nodes of a list and exit with the matching node.
 \ Based on NodeMatch above.
macro ListExitAt(" >r begin r> NodeAdvance >r r@ while "
macro)ListExitAt " until then r> "
 \ Use r@ to access current node
 \ Example of use
: NodeFind (n &List -- &Node|0) \ Find Node in List with value n
 ListExitAt(dup r@ >Value @ =)ListExitAt nip
;
[then]

The loop construction begin .. while .. until .. then used below may be unfamiliar. The
loop has two exit points; until branches back to begin until the match is found. Once the list
is exhausted, while will branch forward to then. Although the more familar pairings are while
.. repeat and if .. then, there is nothing in ANS Forth which prevents the forward branch
started by while from being resolved by a later then – see section A.3.2.2.2 of the draft ANS
Forth document at ftp://ftp.forth.org/pub/Forth/Literature/ansforth.pdf

As before, we can factor the loop out into a pair of macros. These
macros will package up the loop so that NodeFind becomes simply:

 ListExitAt(dup r@ >Value @ =)ListExitAt nip

The final nip discards the integer value we are trying to match. We do
not include it in the macro so that we are not tied to matching integers,
but can match more complex objects such as strings.

Although ListExitAt provides an important facility for matching, when
sorting a singly-linked list we actually need the node before the matching
node. This is because, when searching for a position to insert a node, we
don't know we've found the right place in the list until we've moved beyond
it. NodeFindBefore works differently, retaining some history. If no match
can be found, the last node of the list is returned which is the right node
to attach a new node to.

 20

0 [if] \ Sample code as basis for macro ListExitBefore
: NodeFindBefore (n &List -- &PriorNode)
 \ Find Node in List with value n
 dup 2>r \ Stash PriorNode and ThisNode on Return Stack.
 \ Value of PriorNode is dummy but irrelevant here,
 \ as it will be replaced at once
 begin
 r> r> drop dup \ Replace PriorNode with current node
 NodeAdvance 2>r \ Advance current node and stash both
 r@ while \ While list not exhausted
 dup r@ >Value @ = \ Compare with n
 until \ Match found
 then \ List exhausted, node not found
 2r> drop \ Keep just PriorNode. This is never 0.
 nip
;
[then]

\ Pair of macros to search the nodes of a list and exit with the node before the
\ matching node. Based on NodeFindBefore above.
macro ListExitBefore(
 " dup 2>r begin r> r> drop dup NodeAdvance 2>r r@ while "

macro)ListExitBefore
 " until then 2r> drop "

: NodeFindBefore> (n &List -- &Node)
 \ Finds the node before the first node greater than n.
 ListExitBefore(r@ >Value @ over >)ListExitBefore nip
;

0 [if] \ TESTING: At this point, we could test by finding the node, eg with a
 \ value before 25:
 Unsorted ListShow
 25 Unsorted NodeFindBefore> NodeShow
[then]

Rather than juggling the Return Stack, we could save the PriorNode in a
variable. This often simplifies a complex word but the benefit here is not
significant.

 21

: NodeMove (&FromPriorNode &ToPriorNode --)
 \ Move a node from one place on a list to
 \ another place on the same or another list.
 >r \ Stash &ToPriorNode
 NodeDetach
 r> NodeInsert
;

0 [if] \ TESTING: At this point, we could test by moving the head node
 \ from one list to another:
 Unsorted ListShow
 Sorted ListShow
 Unsorted Sorted MoveNode \ Move the head node between lists.
 Unsorted ListShow
 Sorted ListShow
[then]

\ Tools for sorting ---

: NodeSort (&PriorNode &TargetList --) \ Insert a node into the TargetList
 >r
 dup NodeAdvance >Value @ \ Find value of node to insert
 r> \ -- &PriorNode Value &TargetList
 NodeFindBefore> \ Find place to insert it
 NodeMove \ Move node to TargetList
;
: ListSort (&UnsortedList &SortedList --) \ Move UnsortedList nodes
 \ into sequence in SortedList
 \ The following line is an optional assertion.
 dup @ abort" ListSort: SortedList is not empty"

 over @ 0= if 2drop exit then \ Nothing to sort so exit early

 begin
 over >Link @ \ Repeat until UnsortedList is empty
 while
 2dup NodeSort \ Move first node of UnsortedList
 repeat \ into place on SortedList
 2drop
;

 22

\ Final Testing -------------------------------
: ShowLists (--)
 cr cr ." Unsorted List" Unsorted ListShow
 cr cr ." Sorted List" Sorted ListShow
;
: Try (--)
 \ TESTING: Finally we can test the whole sort routine
 ShowLists
 Unsorted Sorted ListSort
 ShowLists
;
try \ TESTING: Do it

 23

Sorting a list of integers can be achieved in far less code – see Leo’s contribution below
which compiles to just 30% of the version above. This is a dramatic difference and worth
examination.

Leo's code is smaller through taking the integers to be sorted from the stack instead of
creating an Unsorted list and words to move a node between lists. It also has no assertions
or other checks. Most importantly, it does not create words which could be re-used but
rather does just one thing with admirable economy.

\ slink.f Leo Wong 23 Jan 02002 +
\ Add integers from the stack, sorted, into a linked list
\ Usage: n1 ... nn n <list> sadds
\ Define a linked list
: list CREATE 0 , ;

\ Get address of a new node
: node (-- addr) ALIGN HERE ;

\ Add node N to its sorted position (Each node consists of: link value)
: sadd (N list --)
 node >R 0 , SWAP DUP >R , (list) (R: Node n)
 BEGIN DUP @ DUP WHILE DUP CELL+ @ R@ < WHILE NIP REPEAT THEN
 R> DROP R@ ! R> SWAP ! ;

\ Add n integers to their sorted positions
: sadds (N1 ... Nn n list --) SWAP 0 ?DO TUCK sadd LOOP DROP ;

\ Display a list's values
: .list (list --) BEGIN @ ?DUP WHILE DUP CELL+ ? REPEAT ;

\ Test
list Sorted
10 12 14 30 28 32 15 13 11 9 Sorted sadds

Sorted .list

 24

euroFORTH 2003

The 18th annual euroFORTH conference is being held on Fri Oct 17th to Sun
19th at the Royal Hotel, Ross-on-Wye, England

The annual conference (held in the UK every third year) returns this year to the UK. For
details, see http://www.micross.co.uk/euroforth2003/Call_for_papers.html . (For Bill Stoddart's
report on the previous year’s conference, see Forthwrite Jan 2003.)

As well as presentation sessions there will be discussion workshops and demonstrations.
A limited area of exhibition space can be made available, please contact the Conference
organisers for further information.

It is hoped that a visit to an industrial installation controlled by a Micross Electronics
system programmed in Forth can be arranged to take place on the Friday morning before
the conference or during the Saturday in place of a workshop session.

The conference hotel is two minutes walk from the town centre and boasts dramatic
views across the River Wye.

Ross-on-Wye has been attracting tourists since Victorian times, and a full visitor
programme is planned for delegates' guests. Visits to Hereford, with its Cathedral housing
the famous 12th century Mappa Mundi, the book town of Hay-on-Wye, and shopping in
Cardiff are all possible.

Cost
Including two nights accommodation at the Royal Hotel with full board from 2pm Friday
17th till after traditional English lunch on Sunday 19th - £300.

 25

Editor's Comment
euroFORTH is the best opportunity in the calendar for Forth users to get together. This
year, FIG UK is joining in to make the event as successful as possible. Early phone calls to
FIG UK members indicate that a substantial proportion are hoping to attend.
 Micross Electronics are to be congratulated in negotiating reasonable prices for
the event – significantly cheaper than the last event in the UK in 2000.
All the officers of FIG UK are planning to be there (possibly presenting a paper or two)
and we would like to meet as many of you as possible.
 So don't wait until the next UK euroFORTH in 2006; add October 17th to your
calendar now.

Extenible Firmware Interface
Has anyone heard about the Intel's Extensible Firmware Interface (EFI)? This is a
replacement for the PC BIOS and involves a byte code virtual machine, see
http://www.intel.com/technology/efi. The EFI specification is primarily intended for the
next generation of IA-32 and Itanium® Architecture-based computers, and is an outgrowth
of the "Intel Boot Initiative" (IBI) program that began in 1998. Apparently the specification
for EFI runs to a staggering 1,000 pages.

So far, I have been unable to find out how Intel's proprietary EFI compares with the Open
Firmware standard - IEEE Std 1275-1994. Among the standard's many features, it
provides a machine-independent device interface that can be used to boot plug-in cards
without providing OS-specific or machine-dependent binary programs on the plug-in card.
So plug-in-card manufacturers can easily support several independent computer
architectures without needing to supply different firmware for each one.

Based on Sun Microsystem's OpenBoot 2.x implementations, Open Firmware complies
with ANSI Forth. OpenBoot is Sun Microsystems' trademark for the firmware product that
ships on SparcStations and SPARCServers.

 26

nnCron

nnCron is a scheduler, scripting tool and automation manager
for Windows PCs developed by Nicholas Nemtzev of nnSoft
(http://www.nncron.ru). We feature it here in Forthwrite for its
Forth scripting. In fact, nnCron is written in SP-Forth.

At its simplest, nnCron takes commands in the same format at
the Unix utility cron and executes them. For example:

application 'chime.exe' is started at 12:15 every
weekday
15 12 * * 1-5 * c:\xxx\chime.exe

the pdf file named in the task is opened daily at 12:00 and at 17:00
0 12,17 * * * * cmd /c "e:\home\re.pdf"

the command file named in the task is executed every 5 minutes
*/5 * * * * * d:\fido\bat\blstbbs.cmd

But nnCron can also be programmed in Forth words where #(...)# takes the place of
the standard : ... ; as:

#(test_memload
Action:
 MemLoad 90 >
 IF
 BALLOON: "MemLoad Warning"
 "More then 90%PERCENT% of available memory is used"
 THEN
)#

In fact nnCron is extended by a number of useful "plug-ins" all programmed in Forth. For
example, the plug-in http.spf provides words to get the file at a URL or to find its Last
Modified date. Using this nnCron can monitor pages on a web-site for changes.

A simple GUI is provided so that you can start, stop and monitor the nnCron tasks using
the mouse.

There is simple and clear English documentation at the site and a user group at
http://groups.yahoo.com/group/nncron

The full version is nnCron costs $25 (with a free 30-day evaluation period). If you do
not require the programmability, try the free nnCron LITE.

Forth is often the vital but invisible
core of a product, and its
contribution is recognised only by
a few. This is the second in a
series of "Forth inside" articles
which reveals the use of Forth
technology around the world.

 27

Feedback on Forth Code index

I'm delighted to report that the new Forth Source Code Index on our web site
(http://www.figuk.plus.com/codeindex/index.html) is proving successful. The Index is still
growing but, of the 265 entries, 40% come from Forthwrite and ¾ of these are only
available on paper.
 Visitors download the entries available electronically immediately but must
request the paper ones (using a "click and send" email). 8 people have gone to the
trouble of making such requests in the past 6 weeks, which extrapolates to about
60/year. Not bad for magazine issues which are several years old.

 The items requested were:

§ Alias alias alias
§ Best string search
§ Finite state machines
§ Heapsort re-visited
§ Object-oriented Forth – a minimal approach
§ Radix, an extravagant sort
§ Stack checking
§ String pattern matcher

It was especially encouraging to get some feedback:

> Sent: 09 March 2003 17:20
>
> Hi Chris,
>
> Thanks a lot for taking your time to do this.
>
> I really appreciated it.
>
> > http://www.figuk.plus.com/articles/issue115.pdf
>
> I will download this one as well.
>
> FIG-UK and yourself are doing wonderful things for
> Forth community.

 28

Presenting The FIG UK Awards
of 2002

These awards are given to encourage effort and recognise

achievement.
The FIG UK Awards of 2001 were won by Chris

Hainsworth and Dave Pochin.

To everyone who sent in their nominations - "thank
you". Looking back, a lot of good work was done during
2002 and our judges, the officers of FIG UK, have now
chosen two winners. They each receive:

§ a place in our web site’s Hall of Fame
§ this mention in Forthwrite
§ a year's free membership.

Ed Hersom: a member for 17 years, a mathematician
and frequent Forthwrite contributor.
(Ed's death was announced in the Jan issue.)

Howerd Oakford: for his enthusiastic and insightful
euroForth Conference reports

We congratulate Howerd on winning
- enjoy your year of free membership!

Free
membership

Forthwrite

Achievement

 29

 Volvovid@aol.com

Across the Big Teich
Henry Vinerts

This material was prepared for Vierte Dimension by Henry Vinerts, and
printed by kind permission of Forth Gesellschaft (German FIG)

FIG Silicon Valley Chapter Meeting - Dec 2002

Greetings!

The December SVFIG meeting surprised me with its being very early -
on the second Saturday of the month, hence I managed to witness only the
first half of it, in which a smaller than usual audience listened to Dr. Ting's
report on his present projects in Taiwan. It turns out that the Taiwan Forth
Interest Group has about 20 members, and that there is an area in Taiwan
which is like Silicon Valley was twenty years ago, offering able
programmers and hardware specialists with lots of ideas and enthusiasm.

Ting is working with a company which calls itself eForth Technology,
Inc., and one of its latest developments is on the web, both in Chinese and in
English - it is the Virtual Campus of the Forth Academy. We were able to
visit the web site from
the computers next-door to our meeting room, and I must say that it is
interesting. The full set of Chinese characters is available only on
WindowsXP, yet other Windows platforms will still show enough to
illustrate how programming in Forth can be done in Chinese, without having
to learn English first. The web page is: http://www.eforth.com.tw . If you
add /academy and click on "kid's classroom" you will see what I mean. For
the grownups there is a wealth of information from Dr. Ting's writing's,
Forth lessons, manuals, a lot of Forth in one location.

The one Forth you won't find there yet is Win32Forth, which is "too
complicated" by Ting's description, and I agree even in my unqualified
opinion. That is why I did not stay for the afternoon session, in which a
number of devotees were going to work on polishing Win32Forth. "Chacun a
son gout", as they say in French.

Mit besten Wuenschen,

Henry

 30

FIG Silicon Valley Chapter Meeting - Jan 2003

Greetings, everybody!

SVFIG started the new year with a meeting announcement that
did not list any scheduled talks, it called only for Dr. Ting and for
John Peters to lead group discussions in planning future activities,
concerning topics on classical aspects of Forth, as well as on Windows
Forth.

Perhaps, as George Perry aptly noted, seeing fewer than a
dozen participants in the morning session, most of us would rather be
"end-users" than producers. I have made my observation a long time
ago that SVFIG would have a shaky time hanging together, were it not
for Ting and George. Now it
seems that John Peters has come with new enthusiasm, sharing his
Win32Forth projects world-wide with some 40 people. The only
problem with being able to communicate more and more easily world-
wide over the Web is, as John himself said, the diminishing need and
willingness to come to meetings and to
socialize with old friends face-to-face.

Clifford Stoll, in his book "The High-Tech Heretic," has devoted
a chapter entitled "Isolated by the Internet." He writes that the
electronic virtual community is not a positive social development and
that, on the contrary, research by a pair of Carnegie Mellon
University psychologists has shown that
there are serious negative long-term social effects, ranging from
depression to loneliness. Let me express some hope that the Forth
spirit will support some high-tech heretics who might well be the
backbone of Forth interest groups world-wide.

Having exhausted in the morning session our efforts to plan for
the future, we were delighted to and spent the rest of the day
listening to impromptu talks by the teaching staff of Cogswell College
and, of course, the ever-resourceful Dr. Ting.

The college project to introduce Forth as a music tool is still
alive, and basic Forth instruction materials are welcome. On a "higher"
plane, Susan Alexjander, who composes music based on frequencies
found in nature, requested assistance in

 31

pattern matching among the spectra of vibrations from pulsars, DNA,
etc.

Ting briefed us on his current work with F# and showed us a
hand-held GameBoy Advance unit into which he had loaded the full
King James' Bible, both in English (in 4 MB) and in Chinese characters
(which needed only 2 MB !). Clever and amazing.

To finish off the day, Ting led us into Chinese history, the story
of 20 silk books preserved in a more than 2000-year old grave, which
was discovered in Southern China in 1973. One of the books, the I
Ching, was based on Taoist philosophy and was used similarly to an
oracle, to answer any and all well-formulated questions relating to
decision-making in life, by interpreting the hexagrams that are
commented upon in the book. The "easy" way of arriving at the
appropriate hexagrams by dividing batches of straws was described in
the I Ching. After Ting explained and added his own theories of the
probabilities of outputs, he told us the moral of his talk: "eForth and
F#" are like the easy I Ching book; if there is a difficult book, it
belongs with Win32Forth and SwiftForth.

Any questions?

As always,

Henry

 32

FIG Silicon Valley Chapter Meeting - Feb 2003

Another Hello from California!

Friederich, your Vierte Dimension 1/2003 just arrived, and I
want to tell you that even in my position as the world's oldest Forth
novice, I find that it contains a lot that I can read with interest and
understanding, but I must confess that I skip over the Forth words in
preference to learning more German. (I almost wanted to refer to
myself as a Forth "Gruenschnabel", but when I found that my Oxford
Duden translates it to "whippersnapper," I decided to stick to my
"novice" title instead.)

It appears to me that Gerard Baecker, who writes to Vierte
Dimension in protest over Forthers' ("Fortherianer!") tendency to look
down upon all other programming language users, is no
whippersnapper himself. I have seen a number of such, who call
themselves software engineers in this country, but the multitude of
them come from schools of much lesser standing than HU-Berlin.
From my personal polls, it seems that for every twenty C++ and Java
students that I meet there might be only one who knows the meaning
of RPN and stack architecture. Anyway, I think that Herr Baecker's
letter makes
some valid points. Perhaps it should be translated into English for
Forthwrite readers.

On February 22nd, 2003, we had another "Ting-less" meeting,
barely exceeding a dozen members in attendance. The morning passed
with us listening to Tim Duncan's lecture and CAC (computer-aided
composition) samples in his music laboratory at Cogswell College. (I
wrote about Tim, our host at the college, in my notes to the
September, 2002, SVFIG meeting.) Tim still hopes to introduce a
Forth language course in the Cogswell curriculum and to extend the
use of Forth in the application of music technology. Discussions about
the make-up of such a course continued after lunch.

Since the Win32Forth proponents were not present, other
Forths could be suggested to Tim Duncan. If he did not know the
common saying: "If you have seen one Forth, you have seen one Forth

 33

...," he heard it now, as ANSForth was discussed. John Rible said that
since the ANSForth committee had not been
able to agree on everything, a lot of inventions in it happened as
compromises. The standard is followed by Forth, Inc., by Sun
Microsystems and Apple in the Open Firmware, and has made Forth
more accepted in certain circles. Suggested books for a course that
follow the standard are the "Forth Programmer's Handbook" and
"Forth Application Techniques," both available
from Forth, Inc.

George Perry did a good job kindling informal discussions, but
they did not last to fill the day. Without Dr. Ting to pitch in, we heard
one more "light-bulb" joke and left early. "How many Forth
programmers does it take to replace a lightbulb? - Just one, but it
has to be the same one who screwed it in in the first place."

Take care,

Henry

 34

Deutsche Forth-Gesellschaft

Would you like to brush up on your German and at the same time get
first-hand information about the activities of fellow Forth-ers in
Germany?

Become a member of the German Forth Society for 80 DM (£28) per
year (32 DM (£11) for students and retirees). Read about programs,
projects, vendors and our annual conventions in the quarterly issues
of Vierte Dimension.

For more information, please contact the German Forth Society at the e-mail address
SECRETARY@ADMIN.FORTH-EV.DE

or visit http://www.forth-ev.de/
or write to
 Forth-Gesellschaft e.V.
 Postfach 161204
 18025 Rostock
 Germany
Tel.: 0381-4007872

German FIG Annual Confere

 35

Letters

Boris
Fennema

Hi Chris,

Happy new year !

I came across this flavour of bit-reversing routine in a book called
"Hacker's Delight', Henry S. Warren Jr, Addison-Wesley, 2002.
It has all sorts of bit shuffling and numerical tricks and tips - (most
of them way over my poor head) but the bit-reversal routine was
elegant.

I remembered reading about bit-reversal in assembler by Julian
Noble (Sep 2001) using bit rotation and thought the attached may be
of interest. (Bit-reversal is important in signal processing
applications, such as the Fast Fourier Transform, and also in network
routing - Ed)

I like the first routine best - it is the clearest I think - the second is
what is suggested by the author and implement in 'C' but I find it
does 'disturb' the symmetry of the first solution.

All the best,

Boris

The Magazine Team are always pleased to get feedback and encouragement. The first
letter comes from a new member who has already published several items in the magazine.

Boris's code follows:

 36

\ Hacker's Delight - bit reversal routines.

: (1bit)
 dup
 $55555555 and $1 lshift swap
 $aaaaaaaa and $1 rshift
 or
;
: (2bits)
 dup
 $33333333 and $2 lshift swap
 $cccccccc and $2 rshift
 or
;
: (4bits)
 dup
 $0f0f0f0f and $4 lshift swap
 $f0f0f0f0 and $4 rshift
 or
;
: (8bits)
 dup
 $00ff00ff and $8 lshift swap
 $ff00ff00 and $8 rshift
 or
;
: (16bits)
 dup
 $0000ffff and $10 lshift swap
 $ffff0000 and $10 rshift
 or
;

\ () can be executed in any order

: stib (x -- x') (1bit) (2bits) (4bits) (8bits) (16bits) ;

: stib2 (x -- x')
 (1bit) (2bits) (4bits)
 >r
 r@ [decimal] 24 lshift
 r@ $ff00 and $8 lshift
 r@ $8 rshift $ff00 and
 r> [decimal] 24 rshift
 or or or
;

binary

100110011100100 dup stib swap .(input =) . .(became stib) . cr
100110011100100 dup stib2 swap .(input =) . .(became stib2) . cr

decimal

 37

Chris
Jakeman

Phil
Burk

Hi Phil,

Didn't know anything about pForth today, but was inspired to look up
http://www.softsynth.com/pforth/ when I saw that it was in use at
VUB (Free University of Belgium).

Your FAQ asks about implementing KEY portably and losing the
buffering which is all that the C library provides. Here is a copy of
the Gforth IO.C file which tackles this problem for Unix, DOS and
Windows. I see that it cribs from the "readline library for bash".

This file is an impressive achievement and also shows just how
unnecessarily difficult software can be. Simple things should never
be this hard!

Hope this is useful, though I suspect this complexity is what you were
wanting to avoid...

Bye for now

Chris Jakeman

Phil Burk is the author of pForth, the portable public domain ANS Forth with a kernel
written in C, that has been ported to at least 13 platforms. Here is an exchange of emails
that might be of wider interest.

Hello Chris,

Thanks for the file.

Wow! That code is incredible. I have figured out how to do KEY on
Windows and Linux so I think I will just do that in the next release.
Supporting the POSIX/Xenix/Aix/Unix variants is too scary.

Ironically, the easiest platforms on which to implement I/O are
minimal embedded systems. I usually just check a hardware bit for
KEY? and can just read chars from the UART directly. When Forth
is concerned, operating systems are mostly an inconvenience.

Phil Burk

 38

G. Baecker

Finally, we re-publish a letter that appeared in Vierte Dimension recently, with thanks to
Friederich Prinz for permission and Henry Vinerts for translation.

With great interest I have read the issues of Vierte Dimension on
the Web. I am not a "Forther" myself and actually I am writing
this letter only because I am displeased with a certain tendency.
From some of your articles one gets the impression that perhaps the
younger generation that works with computers has no idea how to
program effectively and instead prefers to use programming
languages which are wasteful in performance.

I am a computer-science student and I would like to say a
few words in defence of my chosen profession.

Naturally, one still learns how a microprocessor functions.
(As part of the basic studies one must get to understand the
workings of busses, memories, logic elements and circuits, etc.) One
also learns how to implement algorithms using minimal resources of
processing and memory (Turing machines,
assemblers, etc.)

Every student of computer science knows what RPN is and
how stack-programming works. If, despite that, little or hardly
anything is being programmed in Forth, it is less due to ignorance
than to what one needs to know after completion of computer-
science studies. A computer-scientist is no engineer, i.e., the studies
do not lead to expertise in one or more special
programming languages. On the contrary, one learns paradigms, such
as procedural, object-oriented, and logical ways of programming. It
is even so that in computer science studies not very much emphasis
is placed on practical programming (one should not have to study
just programming). The objective is to learn to be able to
distinguish with which method to solve a problem, if it can even be
solved with the help of computers.

I do not find that Forth is the best programming language. It
is more suitable than other languages for certain kinds of problems,
that's all. Understanding of Forth can definitely contribute to
understanding how computers function (and even that holds true
only for the actually expanded forms of computers), but I think
that the increasing complexity of the
problems keeps demanding an ever increasing level of abstraction.

 39

 My first experiences in programming were with BASIC and
assembler on a small 8-bit computer. Later I learned procedural
languages like Pascal and C. Then came the functional language like
LISP, the object-oriented ones, like Java, Smalltalk, etc., and the
logical, as in Prolog or in production control systems. In between I
used a Forth-like language for my HP calculator (which at that time
was referred to as Reverse Polish Lisp, but in my opinion should
have been called something like HP-Forth), yet I never came to the
idea of installing such a low-level language into my PC.

Yes, I squander the resources of my computer (and massively
so because of my affinity to languages like LISP, Python, and
Prolog), but I save my most precious resource - my time. When I
wish quickly to test an algorithm, I hardly give a thought to how I
could accomplish that on a microcontroller with a 128-byte memory.
(Which does not mean that I am not able to do that.)

The efficiency of a program is not necessarily demonstrated
by by the fact that it is especially fast or small. The clarity and
the readability of a program by others also can be regarded as
criteria of efficiency (hence, for example, Python programs are
fundamentally better than Perl programs). Having
said this, I would be pleased if the Forth society would have a
lesser tendency to misinterpret the lack of interest in Forth among
the young "whippersnappers" as due to their incapability to do
effective programming. Nobody declares that Forth is a dead
language (there are other languages that really deserve such
description and yet have spread themselves frighteningly
far, such as MS Visual Basic, for example).

Forth is a tiny (unfortunately too unfamiliar), yet extremely
appealing and charming facet of the computer world.

G. Baecker

 40

Chairman Jeremy Fowell, 11 Hitches Lane, EDGEBASTON B15 2LS

 0121 440 1809 jeremy.fowell@btinternet.com

Secretary Doug Neale, 58 Woodland Way, MORDEN SM4 4DS

 020 8542 2747 dneale@w58wmorden.demon.co.uk

Editor Chris Jakeman, 50 Grimshaw Road, PETERBOROUGH PE1 4ET

 01733 352373 cjakeman@bigfoot.com

Treasurer Neville Joseph, Marlowe House, Hale Road, WENDOVER HP22 6NE

 01296 62 3167 naj@najoseph.demon.co.uk

Webmaster Jenny Brien, Windy Hill, Drumkeen, BALLINAMALLARD,

 Co. Fermanagh BT94 2HJ

 02866 388 253 webmaster@figuk.plus.com

Librarian Graeme Dunbar Electrical Engineering, The Robert Gordon University,

 Schoolhill, ABERDEEN AB10 1FR

 01651 882207 g.r.a.dunbar@rgu.ac.uk

Membership enquiries, renewals and changes of address to Doug.
Technical enquiries and anything for publication to Chris.
Borrowing requests for books, magazines and proceedings to Graeme.

 For indexes to Forthwrite, the FIG UK Library and
 much more, see http://www.fig-uk.org

 Payment entitles you to 6 issues of Forthwrite
 magazine and our membership services for that

 period (about a year). Fees are:

National and international £12
International served by airmail £22
Corporate £36 (3 copies of each issue)

 Your membership number appears on your envelope
 label. Please quote it in correspondence to us. Look out

for the message "SUBS NOW DUE" on your sixth and last issue and please complete
the renewal form enclosed.
Overseas members can opt to pay the higher price for airmail delivery.

 Copyright of each individual article rests with its
 author. Publication implies permission for FIG UK to

reproduce the material in a variety of forms and media including through the Internet.

FIG UK Web Site

FIG UK Membership

Forthwrite Deliveries

Copyright

 41

FIG UK Services to Members

Magazine

Library

Web Site

IRC

Members

Beyond the
UK

Forthwrite is our regular magazine, which has been in
publication for over 100 issues. Most of the contributions
come from our own members and Chris Jakeman, the Editor,
is always ready to assist new authors wishing to share their
experiences of the Forth world.

Our library provides a service unmatched by any other FIG
chapter. Not only are all the major books available, but also
conference proceedings, back-issues of Forthwrite and also of
the magazine of International FIG, Forth Dimensions. The price
of a loan is simply the cost of postage out and back.

Jenny Brien maintains our web site at http://www.fig-uk.org. She
publishes details of FIG UK projects, a regularly-updated Forth
News report, indexes to the Forthwrite magazine and the library
as well as specialist contributions such as “Build Your Own
Forth” and links to other sites. Don’t forget to check out the
“FIG UK Hall of Fame”.

Software for accessing Internet Relay Chat is free and easy to
use. FIG UK members (and a few others too) get together on
the #FIG UK channel every month. Check Forthwrite for details.

The members are our greatest asset. If you have a problem,
don’t struggle in silence - someone will always be able to help.
Do consider joining one of our joint projects. Undertaken by
informal groups of members, these are very successful and an
excellent way to gain both experience and good friends.

FIG UK has links with International FIG, the German Forth-
Gesellschaft and the Dutch Forth Users Group. Some of our
members have multiple memberships and we report progress
and special events. FIG UK has attracted a core of overseas
members; please ask if you want an accelerated postal delivery
for your Forthwrite.

