

 ISS 0265-5195

news people reviews projects programming

Jan
2003

Issue 119

FIGUK magazine:
An Interview with Barry Culver

From the 'Net
euroFORTH Conference Report

Word Completion for Quikwriter Project
Using Wordlists for Many[

Across the Big Teich
Vierte Dimension 3/2002

More Graphics with
Win32Forth

euroFORTH 2002 � Conference Report
.. 23

AGM Report 31

Forth News 2

Across the Big Teich
 35
Vierte Dimension 3/2002 40

Rectangles in Win32Forth 5
Using Wordlists for Many[....... 32

An Interview with Barry Culver . 13
From the 'Net 18
Nominations for the

FIG UK Awards 30

Word Completion for Quikwriter
Project

.. 27

news

reviews

programming

people

events

Jan
2003

Issue 119

projects

 1

Editorial
Forth News provides a good check on the
health of the Forth community. In this issue,
we report significant new programs in
networking, ColorForth for Windows, HolonX,

a new MISC design, updates to many public domain tools, a
complete wordset for floating point and other items - a great
way to round off 2002.

See inside for the promised interview with Barry Culver and
another key item in the Win32Forth series from Dave Pochin.

We welcome new member Philip Eaton who has long experience in
Forth and an interest in restoring old arcade games.

With great regret, we report the death of Ed Hersom. Ed was a
member for 17 years contributing interesting items to
Forthwrite.

May I commend Chuck's videos to you? (Now that I have ADSL,
downloading a 100MB presentation is quite feasible.) Chuck is a
good speaker with a great sense of humour, see
http://www.ultratechnology.com

PS. Don�t forget the monthly IRC session. Our next one is
Saturday 1st February on the IRC server called �IRCNet�,
channel #FIGUK from 9:00pm.

Until next time, keep on Forthing,

 2

Forth News

Forth Events
In the previous issue, we reported that
Bernd Paysan had contributed a Forth
entry to the contest run by the 2002
International Conference on Functional
Programming. Anton Ertl has analysed
the results at
http://icfpcontest.cse.ogi.edu/scoring/table4s
.html to find that "Bernd's "busy-bee"
(entry 30) is 10th out of 168 entries.
Congratulations! This is especially
remarkable since Bernd worked alone
and did not make use of all the available
time."

Bernd writes about his entry at
http://www.jwdt.com/~paysan/icfp.html

Forth Applications

CWeed v2.1
Howerd Oakford has improved CWeed,
a well-proven program for tidying up
the white-space in source files. It can
convert a C source file to a prescribed
layout standard, but is also useful for
removing tabs, trailing spaces and
double lines from any text file. Also PC
<-> Unix format conversion, display of
control characters etc...

The download contains complete source
for Win32Forth; see
http://www.inventio.co.uk/Cweedexe.htm

Mail and News
With the aid of his minimal proposed
pipes and sockets wordset, Marcel
Hendrix has implemented short
programs to send email, to receive
email and receive news. The wordset
and programs can be found at
http://home.iae.nl/users/mhx/pipes&socks.ht
ml. The code is for iForth on WinNT 4.0
and Linux 2.0. iForth is a commercial
product; but licences without cost will
be considered if the community
benefits.

Email
4ePost is a new mailer from Jos
v.d.Ven which is able to exchange
email or news in ASCII using the
Internet. Its special features are the
speed and management of spam.

This is an "open project" and
contributions are encouraged.

4ePost requires Windows, Internet
Explorer and Win32Forth. See
http://home.planet.nl/~josv/m4ePost.html

Updates for 3D Chess
Jos v.d.Ven has posted updates to
several Win32Forth programs
downloadable from
http://home.planet.nl/~josv/msources.ht
ml including 3D Chess, Toolset and
Scene v2.2

 3

Forth Resources

Floating Point Words
Brad Eckert has provided an extension
for 16-bit and 32-bit ANS Forths. It
provides 32-bit or 64-bit mantissas and
15-bit or 31-bit exponents, depending
on your cell size. He also indicates 11
words which are candidates for
programming in assembler. This is the
first extension I have seen in this rather
difficult area and a major contribution
to the public domain. See
http://www.tinyboot.com/float.txt

HolonX
Wolf Wejgaard is well-known for his
Holon system for Forth which handles
source text in a tree structure of
modules, groups and words. Whereas
previous Holon systems have been
dedicated to specific targets

(x86/MSDOS, 68HC11, JavaVM), in
the new HolonX the structured source
text is "loaded" to a linear text file
ready for an external
compiler/interpreter. If you load the
whole application, the complete source
text is contained in this one file. You
can also choose to load only one
module, one group, or just one word.
Internally, source is saved in an XML
format. Wolf offers HolonX as a tool to
experiment with structured source. See
http://holonforth.com/tools/holonx.htm.

^Forth to C Translator
David Williams has upgraded the
^Forth to C translator for PFE to
include floating point words, with a few
other code generation revisions. The

translator enables you to write in Forth
and compile to C. You can also mix C
code snippets in your Forth. See
http://www-
personal.umich.edu/~williams/archive/forth/h
atforth/dir.html

Forth at VUB
Vrije Universiteit Brussel is the Free
University of Belgium. The Principles
of Programming Languages is one of
the courses run by the Computer
Science department which includes
exercises in Pascal, Java, Smalltalk,
Prolog and Forth. Phil Burke's ANS
pForth is used for the exercises. See the
course syllabus at
http://progmc30.vub.ac.be/FV's%20Courses
/CMP213/ and pForth at
http://www.softsynth.com/pforth/

Forth for Music
Jodell Bumatai has launched the SVFIG
Musical Forth Words Project in
conjunction with students of Cogswell
College. Windows, Linux and Mac will
be supported. Forth Programmers
interested in music are welcome to join
this project. See
http://www.dolfina.org/tutorials/goforth.htm

Non-commercial
Systems

ColorForth for Windows
Richard Collins has programmed a
variant of ColorForth for Windows
(works on Win2000). Now you can
explore without having to boot from
floppy. Download the 20K (!)
executable from
http://homepages.paradise.net.nz/rscollins/c
4/

 4

b16 FPGA Processor
Bernd Paysan has designed a 16-bit
MISC processor for the public domain
with components obtained by
negotiation with Hans Eckes
(hanseckes@addcom.de). The
architecture is inspired by the c18 chip
and by ColorForth from Charles Moore
and provides 32 instructions. The
design comes with sample code and a
simple programming environment and
programs are downloaded via a serial
line. See
http://www.jwdt.com/~paysan/b16.html

Forth for iPaq PDA
Francois Vignon has
offered his Forth
implementation to
others who might be
interested (reach
him at
f.vignon@ifrance.com)
.

 Three other people
have registered their
application of Forth
on iPaq at
http://www.handhelds.org/z/wiki/HandheldsP
eople

Win32Forth v6.01
A new release is available which
includes access to sub-directories. See
http://sourceforge.net/project/showfiles.php?
group_id=55294

kForth Updates
Krishna Myneni reports that kForth
v1.0.13 is now available for many
versions of Linux including Mandrake
9.0. See
http://ccreweb.org/software/kforth/kforth.html

Francois Vignon has offered his Forth
implementation to others who might be
interested (reach him at
f.vignon@ifrance.com). Three other
people have registered their application
of Forth on iPaq at
http://www.handhelds.org/z/wiki/HandheldsP
eople

PicForth v0.7 Released
Samuel Tardieu has greatly
improved the compiler and
documentation for this cross-
compiler. PicForth generates code
for the Microchip PIC 16F87x
microcontroller family and is hosted
on Gforth. For downloads and
examples, see
http://www.rfc1149.net/devel/picforth

Commercial Systems

New Product SwiftX-SC
Forth Inc. have announced a new
product, SwiftX-SC, a version of
SwiftX for the Atmel AT90SC flash-
based smart cards (based on the AVR
mpu). This product was exhibited in a
preliminary form at the Cartes smart
card show in Paris in October, and is
now ready for shipment. See
http://www.forth.com

 5

Rectangles in Win32Forth
Dave Pochin

Dave has been sharing his discoveries on using Win32Forth to tame
the Windows monster for some time. Material supporting this unique

series can be found at http://www.sunterr.demon.co.uk .

Working with the graphics in Win32Forth can be frustrating. Here is a listing
and some examples for working with rectangles.

I recently wished to fill a rectangular area of the screen with a colour. The class
WinDC in the file DC.F has two methods that are suitable, FillRect and
FillArea.

The method FillRect requires a local variable rectangle and makes a call to
FillRect(), a Windows function.

The method FillArea uses the method SetRect and a rectangle called
FillRect and then calls the Windows function FillRect().

So FillRect: is a method in WinDC
 FillRect is an instance of the class rectangle, and
 FillRect() is a Windows function.

Too many FillRect's for me. Here we go, defer the job and get back on the
learning curve.

At the end of the Win32Forth file Class.F is a definition of the class Rectangle
which contains a structure Record: and a number of methods.

FillArea (left top right bottom color_object --)
Uses the instance of Rectangle called FillRect, declared at the beginning of
WinDC, SetRect: and .AddrOf from the class Rectangle.
FillArea will certainly do the job, but if I ever need more than one rectangle, I
will have to repeatedly reset the rectangle FillRect, which could make
debugging difficult.

FillRect (color_object rectangle --)
By using FillRect, I can have as many rectangles as my heart desires, providing
I have their addresses, but each will still require the co-ordinates to be set. No
problem, use the class Rectangle.
 a) declare a rectangle called nrect using Rectangle nrect
 b) set it up using left top right bottom SetRect: nrect
 c) find its address using nrect.AddrOf

 6

Like every instruction in WinDC, the required graphic can only be displayed by
calling a Windows function. So both FillRect and FillArea end by making a
call to the Windows function FillRect(). This requires the conversion of the
relative address used by Forth to the absolute address used by Windows, by
using the term rel>abs and the handle of the device context hdc.

All done, now back to work. But no, a quick check in the reference texts shows
there are fifteen Windows functions dealing with rectangles. I really don't want
to look at these now, but since I've started....

These Windows functions are of two types, those which connect a rectangle to
the screen and require a call to the device context, and those which manipulate
the rectangle structures.

All the Windows rectangle functions return a value, these are either an indicator
of success/failure of the function or of an operation giving a true/false result.

The listing below is heavily commented so that it can be easily changed for any
required variations. Any Windows functions that call the device context use
GetHandle: DC , and all the return values have been dropped, the
success/failure returns should really be ?win-error and the values of the
true/false returns are indicated where appropriate.

Each figure in the screen-shot shows the result of the operations in each section
of the listing, and hopefully, only a few additional notes are needed.

Section 1
FillRect and FillArea are both Win32Forth methods from the class WinDC
but, in general, the Windows functions have to be used, as there are no Forth
equivalents. All three fill functions use a brush, line2* uses a stock brush and
WinDC, line3* uses Windows and one of 30-odd system colours defined as
constants. (COLOR_INFOBK is the colour of the background of the ToolTip
control, to find the other constants use constants COLOR_ and use any term
with this prefix, for example COLOR_ DESKTOP or COLOR_3DLIGHT. The result will
depend on how the desktop is set up, all these constants require 1+ as shown.
Interchange lines marked 1*, 2*, and 3* to see the effect).

The Windows function InflateRect is used to change the size of a rectangle;
the function CopyRect to copy one rectangle to another and the function
EqualRect to compare two rectangles. The effect of these functions is
demonstrated in the figure below.

Section 2
In this section two overlapping rectangles are set and made visible by using the
Windows function DrawFocusRect. The rectangle is outlined with a series of one
pixel dots; as this is an XOR operation. The rectangle will show against all

 7

backgrounds and, if the function is repeated, the rectangle is no longer visible on
the display.
The intersection of the two rectangles can be set to a third rectangle by using the
IntersectRect function.

Section 3
In this section two overlapping rectangles are drawn as before, and are then
used to set a third rectangle representing their union using the UnionRect
function. The result is not the union of two arbitrary figures as these rectangle
operations will only succeed if the result is a rectangle.

Section 4
An alternative way of marking the rectangle is to use the function FrameRect
instead of DrawFocusRect; FrameRect outlines the rectangle with a specified
brush. Rectangles can be offset to new positions using the OffsetRect function.
This changes the co-ordinates in the structure and can be tested by commenting
out lines (4*) and (5*) and noting that the frame is not offset.

Section 5
As well as the operations to form the union and intersection of two rectangles, a
subtraction operation is available. Because these operations succeed only when
they result in a rectangle, a demonstration based on overlapping rectangles as in
sections 2 or 3, would give one of the rectangles as the result.
Rectangles can be erased, (their structure values set to 0) either by using the
Windows function SetRectEmpty or, as here, by using the method EraseRect:

 8

from the class Rectangle and emptiness can be tested by using the function
IsRectEmpty.
Another useful test is the function PtInRect; it is not necessary to set the point
as in this section before using the test.

Section 6
Another Windows rectangle function is DrawEdge. In its Win32Forth form it may
be written DrawEdge (Flag Edge Rectangle Handle -- flg) .
The flag can be any of 19 constants with the prefix BF_ .
The edge of can be any of 4 constants with the prefix BDR_ followed by 11
letters or of the 4 constants with the prefix EDGE_ . A Windows reference guide
or similar should give a full explanation of these constants. With a little more
time, better ways of producing the figure shown could be found.

Q. What can be done with all this information?
A. Make a new dancing rectangle demonstration, or maybe a simple game.

Q. If I make an array of elements based on Section 6, do I have to spend time
developing ToolBars?
A. No, no, not now. There is work to do.

\ Rectangles.F Experiments with rectangles

 anew program

 :OBJECT Rectdemo <SUPER WINDOW

\ Set up three instances of the class Rectangle
 Rectangle arect
 Rectangle brect
 Rectangle crect

:M ClassInit: (--)
 ClassInit: super
 ;M

:M ExWindowStyle: (-- style)
 ExWindowStyle: SUPER
 ;M

:M WindowStyle: (-- style)
 WindowStyle: SUPER
 WS_BORDER OR
 WS_OVERLAPPED OR
 ;M

:M WindowTitle: (-- title)

 9

 z" Rectangles "
 ;M

:M StartSize: (-- width height)
 550 310 ;M

:M StartPos: (-- x y)
 100 100
 ;M

:M Close: (--)
 Close: SUPER
 ;M

:M On_Init: (--)

 \ Set two rectangles using rectangle class (left top right bottom --)
 40 50 100 110 SetRect: arect
 40 150 100 210 SetRect: brect
 ;M

:M On_Paint: (--) \ screen redraw procedure

\ Section 1: FillRect(), InflateRect(), CopyRect(), EqualRect().
40 20 s" Section 1" TextOut: dc

\ Use FillArea: from dc { left top right bottom color_object -- }
30 40 110 120 LTBLUE FillArea: dc

\ Use FillRect: from dc { color_object rectangle -- }
(1*) LTYELLOW arect.AddrOf FillRect: dc

\ alternative, use System colours and call to Windows FillRect()
\ (2*) BLACK_BRUSH SelectStockObject: dc drop arect.AddrOf
\ rel>abs GetHandle: dc Call FillRect drop

\ (3*) COLOR_INFOBK 1+ arect.AddrOf rel>abs GetHandle: dc Call
\ FillRect drop

\ Alter the size of arect (dy dx rectangle --)
-20 20 arect.AddrOf rel>abs Call InflateRect drop
LTGREEN arect.AddrOf FillRect: dc

\ Copy arect to crect
arect.AddrOf rel>abs crect.AddrOf rel>abs Call CopyRect drop
arect.AddrOf rel>abs crect.AddrOf rel>abs Call EqualRect drop
(True)

\ Alter the size of crect (dy dx rectangle --)

 10

20 -40 crect.AddrOf rel>abs Call InflateRect drop
arect.AddrOf rel>abs crect.AddrOf rel>abs Call EqualRect drop
(False)

LTCYAN crect.AddrOf FillRect: dc

 \ Section 2: DrawFocusRect(), IntersectRect()
 210 20 s" Section 2" TextOut: dc

 \ Reset arect and brect in a new postion and outline both.
 210 50 270 110 SetRect: arect
 230 70 290 130 SetRect: brect
 arect.AddrOf rel>abs GetHandle: dc Call DrawFocusRect drop
 brect.AddrOf rel>abs GetHandle: dc Call DrawFocusRect drop

\ Let crect be the intersection of arect and brect
brect.AddrOf rel>abs arect.AddrOf rel>abs crect.AddrOf rel>abs
Call IntersectRect drop

\ Show crect
LTCYAN crect.AddrOf FillRect: dc

\ Section 3: DrawFocusRect(), UnionRect()
380 20 s" Section 3" TextOut: dc

\ Reset arect and brect in a new postion and outline both.
380 50 440 110 SetRect: arect
400 70 460 130 SetRect: brect
arect.AddrOf rel>abs GetHandle: dc Call DrawFocusRect drop
brect.AddrOf rel>abs GetHandle: dc Call DrawFocusRect drop

\ Let crect be the union of arect and brect
brect.AddrOf rel>abs arect.AddrOf rel>abs crect.AddrOf rel>abs
Call UnionRect drop

\ Show crect
LTMAGENTA crect.AddrOf FillRect: dc

\ Section 4. FrameRect(), OffsetRect(), InvertRect()
40 150 s" Section 4" TextOut: dc

\ Reset brect and frame it with the black brush
40 180 100 240 SetRect: brect
BLACK_BRUSH GetStockObject: dc
brect.AddrOf rel>abs GetHandle: dc Call FrameRect drop

\ Offset brectto a new position, Fill with a colour and invert it.
0 70 brect.AddrOf rel>abs Call OffsetRect drop
(4*) LTGREEN brect.AddrOf FillRect: dc

 11

(5*) brect.AddrOf rel>abs GetHandle: dc Call InvertRect drop

\ Section 5: SubtractRect(), PtInRect(), IsRectEmpty()
240 150 s" Section 5" TextOut: dc

\ Reset arect and brect in a new postion and outline both.
240 180 300 240 SetRect: arect
220 210 320 270 SetRect: brect
arect.AddrOf rel>abs GetHandle: dc Call DrawFocusRect drop
brect.AddrOf rel>abs GetHandle: dc Call DrawFocusRect drop

\ Subtract brect from arect, use crect as the result
brect.AddrOf rel>abs arect.AddrOf rel>abs crect.AddrOf rel>abs
Call SubtractRect drop

\ Fill crect
LTBLUE crect.AddrOf FillRect: dc

\ Erase arect and test for empty
EraseRect: arect
arect.AddrOf rel>abs Call IsRectEmpty drop (True)

\ Test for brect empty
brect.AddrOf rel>abs Call IsRectEmpty drop (False)

\ Set a point in brect
270 225 BLACK SetPixel: dc (x y color_object --)

\ Test for point in brect { y x rect -- }
225 270 brect.AddrOf rel>abs Call PtInRect drop (True)

\ Section 6: DrawEdge()
380 150 s" Section 6" TextOut: dc

\ Reset arect and brect in a new postion and fill both.
375 175 445 245 SetRect: brect
380 180 440 240 SetRect: arect
LTGRAY brect.AddrOf FillRect: dc
LTRED arect.AddrOf FillRect: dc

\ Use DrawEdge() and decorate rectangle.
BF_RECT EDGE_SUNKEN arect.AddrOf rel>abs
GetHandle: dc Call DrawEdge drop
LTRED SetBkColor: dc
WHITE SetTextColor: dc
387 200 s" CLOSE" TextOut: dc
;M

:M WM_LBUTTONUP

 12

 set-mousexy
 mousey mousex brect.AddrOf rel>abs Call PtInRect
 if
 Close: self
 then
 0 ;M

;OBJECT

: DEMO (--)
 Start: Rectdemo
 ;
cr cr .(Type DEMO to run)

Library Donations

Two books have been donated to the FIG UK Library.

Forth Techniques includes a useful reference for Forth standards prior to
ANS Forth. 1985, Olney and Benson, Pan Books, 0-330-28961-6

All About Forth has a section clearly explaining the indirect threading
mechanism. 1990, MVP-Forth Series, Glen Haydon

 13

Culver Consultancy -
An Interview with Barry Culver

Culver Consultancy is the latest company to take

out corporate membership with FIG UK (see
http://www.figuk.plus.com/corporate_membership.htm).

Barry gives us an insight into his work with Forth.

I formed Culver Consultancy in 1998 as a one-man business offering
software and some hardware design consultancy and specialising in
embedded systems for instrumentation.

Customers come to us by word of mouth, supplemented by occasional
mailings, presence on Triangle's list of experts, our web site at
http://www.culverconsultancy.co.uk and the Applegate directory at
http://www.applegate.co.uk and now http://www.fig-uk.org.

About 60% of our business is Forth, though it used to be more.
Where I get to decide, Forth is usually my first choice, except for very
small jobs (like baby PICs) where assembler is more appropriate, or for
Windows where there is a lot of user interface - it is hard to beat the MS
IDEs for Windows GUI development, though VB is a dreadful language!

"Forth is usually my first choice"
 The immediate attraction of Forth was the ability to try out the
code that you had just written immediately and even a tiny kernel gives you

Dual Gas Differential Analyser
This product is a sophisticated high-end dual gas

analyser system for research applications in bio-science.

It features a colour display with a Windows-style

interface. The instrument is powered by a 68332

processor, with an 8051 for interfacing.

 The software for the 68332, incorporating

screen drivers, floating point maths, a DOS-compatible

filing system using PC cards, a high speed data processing and logging system was designed and

written by Culver Consultancy Ltd.

 This product is manufactured by ADC BioScientific Ltd. at http://www.adc.co. uk/

 14

so much functionality in a tiny amount of space. I started using Forth on
small micros - suddenly I could write code and test hardware far more
quickly - there was no going back!

Having used Forth for so long, it is a bit like an old pair of slippers -
very comfortable to work with. Once you start thinking in a Forth-like way,
the limitations of other languages/development environments tend to get in
the way.
 I started off using a long-dead Rockwell product - a 6502 with a
couple of K of Forth kernel on-chip. I could build a simple controller with
this beastie in no time, and used it in a couple of lab equipment products. I
have done a lot with Triangle cards - these are great for short runs and
quick turn-around jobs - I still use them a regularly, though I find the TDS
development environment is a bit too slow and awkward for large programs.
The MPE cross-compilers (8051 and 68K) are used for several products
that I designed for one client. Their fast compilation is offset by
complications with the cross-compiler; it is hard to use defining words and
the documentation didn't help. I understand that newer versions are
better in this regard.
 While contracting, I was using a heavily customised Forth based on
F83, using multiple segments to squeeze as much code and data as possible
into the DOS environment. I still use this Forth regularly for product
maintenance and it is probably my favourite Forth despite being 16 bits and
DOS - it has great debugging facilities. Unfortunately, it is very much a
proprietary implementation so I could not use it for anything else without
rather complicated licensing issues!

Recently, I have been playing with an evaluation copy of the MPE VFX
compiler for Windows. To try it out properly, I have been writing a piece of
code to retrieve data from DAT tapes. I haven't had much spare time, so
things are progressing very slowly - but it looks very promising so far. The
speed is amazing (especially on a fast modern PC), but debugging is a pain
unless you turn off the optimiser!

"the speed is amazing"
You asked about collaborating with other Forth users. When I get

stuck, I mostly turn to the 'Net � it's a fabulous resource and so vast that
someone, somewhere has tackled the same problem before.

I worked on a big project for a couple of years as a contractor and I
think there were five other Forth programmers working on it. But I think
at least three of them no longer write Forth software. I don't think that
there are many of us around, and sadly, I suspect that we are a dying
breed.

 15

The world is changing, and in the software world, more and more
software is written using rapid development environments to reduce costs.
The traditional Forth benefits of efficiency and instant feedback are
becoming less relevant, given that even the smaller micros are being
developed with the C/C++ language in mind and come with the appropriate
development tools. Given enough complexity and processing power, you can
make a C++ programming environment that is as immediate as a simple Forth
one... I guess that the challenge to the Forth community is to keep up with
all this. I worry that Forth is fast becoming an enthusiasts' language.

I don't want to be too pessimistic, as I really love using Forth. The
reason for joining FIG UK was to see what other are doing, and maybe swap
ideas.

My project with MPE VFX Forth is certainly the most exciting
recent project - too bad I have had so little time to spare on it. The
learning curve is really steep for me, as this is programming under Win32 in
the raw - a new environment, and of course leaving it for weeks on end does
not help. But when you get something working there is a real sense of
achievement.

 16

provides everything needed in a
professional-quality low-cost Forth
controller board.

Use it in industrial or hobby
projects to control a wide range of
devices using the well-known multi-
tasking Pygmy Forth.

Designed for hosting from a Windows
or DOS PC, you can test your
application as it runs on the F11-UK
board itself. The board was developed
by FIG UK members to provide an easy
way to explore the world of controlled
devices � a niche where Forth excels.

The kit includes both hardware and
software and is supported and sold to
members at a nominal profit through a
private company.

Software

PC-based PygmyHC11 Forth compiler
running under DOS produces code for
Motorola HC11 micro-controller.

Code is downloaded via standard serial
link from the PC to the FLASH memory (or
RAM) on the F11-UK single board
computer (SBC).

No dongle or programming adaptor of any
kind is required.

Forth running on the SBC is interactive
which makes debugging and testing much
easier.

Multitasking and Assembly included.

The serial link can be disconnected to
enable the SBC to function as a stand-
alone unit.

All source code provided - 78 pages
or so (unlike many commercial
systems).

Around 30 pages of additional
documentation is supplied including a
full glossary of the 300 or so Forth
words in the system.

Email mailing list for discussion and
limited support.

Hardware:

Processor:
 Motorola HC11 version E1 - 8 MHz (2
 MHz E-Clock).
Memory:
 32k x 8 FLASH
 32k x 8 battery backed SRAM
 512 x 8 EEPROM onboard HC11.
I/O:
 20 lines plus 2 interrupts (IRQ & XIRQ).
Analogue in:
 up to 8 lines using onboard 8-bit A/D.
Serial:
 1. RS232, UART onboard HC11

 2. Motorola SPI bus onboard HC11.
Expansion:
 Via HC11 SPI serial bus using
 2 or more of 20 available lines.
Timer system:
 Inputs: 3 x 16-bit capture channels
 Outputs: 4 x 16-bit compare channels.
PCB size: 103 x 100 mm.

Price to FIG UK members: £47.0 plus postage and packing (£2 UK, £4 overseas) plus

$25.0 (US Dollars) for registration of 80x86 Pygmy Forth with
the author Frank Sergeant.

 Delivery: ex-stock.
 More information: jeremy.fowell@btinternet.com and 0121 440 1809

F11-UK

 17

Joining the F11-UK Mailing List:

Graeme Dunbar, our list moderator, has reported that the list has
received a number of requests of uncertain origin to join it. Since
spamming is a potential problem the banner on the List's home page
has been altered to ask prospective members to identify themselves
first. If you would like to join please apply to:

http://groups.yahoo.com/group/fig-forth-uk/

Activity on the Mailing List has been episodic, with a burst of
messages kicked off recently by Garth Wilson. Jeremy has continued
to refine the F11-UK kit based on feedback from our users and,
following a survey posted by Graeme Dunbar, we are starting to
discuss potential extender boards to further extend the variety of
devices that can be connected.

 18

cjakeman@bigfoot.com

From the 'Net
Chris Jakeman

Here are a number of short items from the comp.lang.forth

newsgroup which are well worth re-publishing. You can explore the
entire archive of the newsgroup by visiting http://www.google.com

BCD to Binary
Bernd Paysan posted this to comp.lang.forth in a thread about "Commenting".
This routine converts a 2-digit BCD (binary-coded decimal) integer to binary. For
example, in BCD, the bit-pattern 0101 0101 represents 55. To convert to binary,
extract the top half-byte, multiply by 10 and divide by 16. This gives the bit-
pattern 0011 0111 representing 55 in binary.

 (5*16 * 10 / 16) + 5 = 50 + 5 = 55

A previous poster had already pointed out that it is quicker to use 2/ than */
to calculate 10/16 = 5/8 = 1/2 + 1/8 and that's used below.

 : *10/16 (n1 -- n2) \ much faster than 10 16 */
 2/ dup 2/ 2/ + ;
 : tens (bcdxy -- bcdx0) $F0 and ;
 : ones (bcdxy -- bcd0y) $0F and ;
 : bcd>bin (bcd -- n) dup tens *10/16 swap ones + ;

Originally bcd>bin was defined as a single word:

 : BCD>BIN (uc -- uc')
 DUP 0F0 AND 2/ DUP 2/ 2/ + SWAP 0F AND + ;

but Bernd has split it into 3 more words to show the value of factoring into small
definitions. Not only is Bernd's version self-documenting, but it makes tens and
ones available for use in other BCD words.

Aligning Addresses
Anton Ertl posted this to comp.lang.forth in a thread about "Rounding up
Integers to the next power of 2". Two versions were offered for aligning
addresses to 4-byte boundaries with a challenge as follows:

 : align (n -- n') 1- 3 OR 1+ ;
 : align (n -- n') NEGATE -4 AND NEGATE ;

"If anybody can top these two, feel free to join in!"

 19

Anton responded to the challenge with:

 : aligned (c-addr -- a-addr) 3 + -4 and ;

which has only two operations. Moreover the literals are often for free in native
code.

Meta-Programming
Bernd Paysan responded to another challenge on the newsgroup regarding meta-
programming (ie programs that write programs) based on an example in C++
using templates.

> Indeed, I would enjoy seeing someone tackle a Forth equivalent to
> the Bubble Sort example given at the above link, if anyone is
> feeling particularly "meta".

: lift (addr -- addr')
 dup 2@ < IF dup 2@ swap 2 pick 2! THEN cell+ ;

: bubble<N> (n --)
 >r : r>
 1 swap 1- ?DO
 postpone dup
 I 0 ?DO postpone lift LOOP
 postpone drop
 -1 +LOOP
 postpone drop
 postpone ;
;

4 bubble<N> bubble4

This line creates a word to bubble sort an array of 4 integers in memory. The
usual loop is unrolled for maximum performance:

see bubble4
: BUBBLE4

 DUP LIFT LIFT LIFT DROP DUP LIFT LIFT DROP DUP LIFT DROP DROP ;

and may be used as follows:

Create test 3 , 1 , 4 , 2 ,
test bubble4

For more on Template Meta-Programming in C++, see
http://osl.iu.edu/~tveldhui/papers/Template-Metaprograms/meta-art.html

 20

Stashing on Return Stack
ANS Forth introduces two word pairs which work with a variable number of
values on the Data Stack. These are SAVE-INPUT .. RESTORE-INPUT and GET-
ORDER .. SET-ORDER.
 For example, SAVE-INPUT (xn .. x1 n --) where x1 to xn describe
the current state of the input source specification for later use by RESTORE-
INPUT.
 Typically the values extracted by SAVE-INPUT or GET-ORDER are stashed
on the Return Stack so that settings can be changed temporarily and later
restored by retrieving the data from the Return Stack.
 A useful pair of words to do this are N>R and R>N. These are not
mentioned in the ANS Forth document (or Gforth or Win32Forth), but can be
found in VFX and SwiftForth.
 After posting a query on the newsgroup, Wil Baden provided this pair of
definitions:

: N>R (xn ... x1 n --)(R: -- x1 ... xn n)
 dup (xn ... xi n n-i)
 BEGIN dup WHILE
 ROT >R
 1-
 REPEAT (n 0)
 DROP >R ;

: NR> (-- xn ... x1 n)(R: -- x1 ... xn n)
 R> dup (n n-i)
 BEGIN dup WHILE (xn ... xi n n-i)
 R> ROT ROT
 1-
 REPEAT (xn ... x1 n 0)
 DROP ;

Interpreted DO
Responding to a comment about executing DO .. LOOP at the command line,
Wil Baden pointed out that any ANS Forth can interpret constructs which must
be compiled, such as DO .. LOOP and IF .. THEN by using the word MARKER
(which ANS introduced). He suggests the following scheme to add to your
toolbox.

All Standard Forths can have an interpreted DO

Here's one way...

 : :GO S" MARKER NONCE : (GO) " EVALUATE ; IMMEDIATE
 : GO S" (GO) NONCE " EVALUATE ; IMMEDIATE

 :GO 91 65 DO I EMIT LOOP ; GO

 21

which prints

ABCDEFGHIJKLMOPQRSTUVWXYZ ok

Garbled Messages
Jerry Avins replied to a posting about decoding messages by hand and included
this personal item, which deserved repeating here.

The night that terrorists machine-gunned the waiting area at Lod airport
(near Tel Aviv), I was at JFK airport waiting to pick up a friend. Once
flights at Lod were resumed, people ready to go were sent out on any
available flight. Some of course were dead, many in hospital.

Those of us waiting had no way to know who had survived. Who
were arriving, and on what flights, were known only through teletyped
passenger lists sent to the El-Al counter in JFK. A few of those lists came
through with framing errors; some may remember the kind of garbling
that creates.

I asked for and got the first garbled list and tried to make sense of
it. By writing down the bit patterns of what I saw, imagining the missing
framing bits, and guessing the shift, I come up with a few possibilities for
each letter. Only one letter string seemed namelike, so I had a firm grip
on the shift (until it changed), leaving only little uncertainty for each
letter.

The general murmur behind me as I worked was that a harmless
mystic was amusing himself. Until, that is, a woman shouted, "That's my
cousin!" Then everyone wanted to see the list so far, and if whipping
could have made me work faster, they would have done it. Some parts of
some lists were beyond my pencil-and-paper method, but I retrieved most
of the names in the end.

Other people copied the decoded names and circulated the lists.
Each name was crossed off as it was recognized. The "names" not
recognized came back to me for rework, and alternate interpretations
made a few of them recognizable.

"Give me your ASCII, your EBCDIC, your huddled masses of bits

yearning to be read ..."

 22

Solution to Puzzle

Congratulations to Fred Behringer who was the first to offer a correct
solution � MAX

Fred also provides his analysis1 as follows.

Writing down the consecutive stack operations shows that the compound
operation is taking exactly two items from the stack, neither more nor less,
and is placing one, and only one, resulting item on the stack if executed.

Here is my analysis in shorthand notation, with a and b any single
precision signed integer available on your machine:

w := (a>b) w = -1 if a>b w = 0 if a<=b
--
 a b a b | 2DUP
 a b w | >
 a w b w | TUCK
 a w b -(1+w) | INVERT easily seen
 a w b*(1+w) | AND easily seen
 a w | >R
-a*w | AND easily seen
-a*w b*(1+w) | R>
--
= a 0 | if w = -1, i.e. if a>b
= 0 b | if w = 0, i.e. if a<=b
--
Hence,
-a*w V b*(1+w) | OR
--
= a if a>b
 = max(a,b)
= b if a<=b
--

1 Before he retired, Fred was Professor of Operations Research (Applied
Mathematics) at Technische Universitaet Muenchen).

Here is a small puzzle from Michael Gassanenko, published in the
previous issue.

A word with this behaviour is listed in the ANS Forth core word-set.
What is its name?

: X?
 2DUP > TUCK INVERT AND >R AND R> OR ;

 23

Note that there is but a very restricted number of ANS core words with two
entries and one output. So empirically it should not be too difficult to have an
"intelligent guess" and try it with an appropriate number of test values, yielding
a high degree of likelihood. However, this way one can never be sure to have
covered any and all cases.

Mathematics, as the essence of precise reasoning, is needed to turn belief
into certainty.

Forth Inside

From the Editor:

As Forth is ideally suited to embedded applications, it tends to be invisible.
Forth insiders are aware of the best-known applications, as mentioned in
Forth in the UK (Nov 2000 issue and at http://www.fig-uk.org.

I plan to start an occasional section in the magazine entitled "Forth Inside"
to give little-known applications an airing and also provide another
opportunity for Forth professionals users to share their experiences.

I have some unpublished applications already on file but I would be grateful
for news of any commercial applications in UK or abroad which have never
had a mention in Forthwrite.

 24

euroFORTH 2002 �
Conference Report

Bill Stoddart

The papers described here are available from the FIG UK library and
electronic versions may also be downloaded from
http://www.complang.tuwien.ac.at/anton/euroforth2002/papers/

Organised by Anton Ertl and hosted by the Technical University of 'Vienna, the
conference began with lunch in the Restaurant Habigoff, a former hat shop
which has retained its 19th century interior. As well as presentations and
workshops, we enjoyed walks in the town centre (just adjacent to the
university), in the Vienna Woods, and in the Prater, with its famous beer garden,
spectacular funfare and wooded paths. Our conference dinner was at the Vienna
Town Hall.

There were eight presentations and two workshops.

Primitive Sequences in General Purpose Forth
Programs continued the work from EuroFORTH 2001 on
exploration of threaded code optimisation in Gforth via
"super instructions" A number of applications have been
analysed to check for common instruction sequences and the

David Gregg,
John Waldren

 25

effects of optimising the most common sequences from each application has
been tested on the others. Both static and dynamic analysis has been
investigated, with the clear result that static analysis provides the best overall
performance increase whilst dynamic analysis, which gives greater weight to
frequently used sequences (e.g. inner loops), can be very effective when applied
back on the application which provided the analysis.

The Evolution of Vmgen describs a virtual machine
generation tool which creates C code definitions for virtual
machine implementation from operation descriptions. As the
tool has evolved, new features allow more user configuration,
the ability to describe effects on multiple stacks, handling of
"super instructions" and abstraction away from the mechanics
of the threaded code implementation, e.g for describing the
embedding of literal values.

Stack Effect Calculus with Typed Wildcards,
Polymorphism and Inheritance is a framework for static
type checking, refining the stack effect calculus which Jaanus
introduced in the early 1990's. If a, b, c, d are stack argument
lists we start with some rules for combining type signatures
such as:

(a -- b c) (c -- d) = (a -- b d)
meaning that if an operation which removes argument a and
leaves b c is followed by one which removes c and leaves d,
the overall effect is to take a and leave b and d. New ideas
included a more general interpretation for the effects of
opeations that operate on any type (wildcards) e.g. dup swap,
with rules formulated to allow for inheritance and
polymorphism.

Implementing Sets for Reversible Computation
is a general implementation of sets in which sets are held as
ordered arrays. Sets of integers or strings are ordered in the
obvious ways. Sets of sets are ordered first by size, then by
comparing successive elements. Sets of pairs are ordered by
their first elements. For data items other than integers
reference semantics are used such that a set is a list of
references to data items on the heap.

The purpose of these sets is to support "reversible
computation" efficiently - see paper below.

UDP/IP over Ethernet for 8-Bit Microcontrollers
presents a tiny UDP stack in Forth for the CS8900 Ethernet
Controller, allowing simple connectivity between micro-
controllers. In a second talk, Forth for the QNX Realtime

Platform, Federico described an alternative operating system for the PC and

Anton Ertl

Jaanus Pöial

Frank Zeyda

Federico de
Ceballos

 26

embedded targets: QNX Neutrino is a real time operating system with a
relatively small micro-kernel architecture which promises simple device driver
and interrupt programming as well as the ability to deploy applications on single
processors or across clusters of processor without special coding. Slightly
disappointed by the fact the colorForth did not run on his computer, Federico
has been looking for a more appropriate environment for his Forth applications
than that provided by Linux or Windows. Further developments are awaited...

Efficient "Reversibility" with Guards and Choice
I presented a paper on mechanisms for reversible
computation in the context of native compiled Forth for the
Pentium. Two new features are added to Forth called choice
and guard. A choice construct has the form <CHOICE A [] B
... CHOICE> . This makes a provisional choice between A, B
etc.. The guard construct, now written as -->, takes a flag
from the stack. If true, execution continues ahead; if false,
execution reverses back to the most recent choice which has a
still unexplored alternative. The presentation was illustrated
with a classic Knight's Tour case study - where the goal is to
visit every square on a chess board using the Knight's moves
and visiting only unvisited squares.

[The purpose of Reversibility is to

Super-instructions in Gforth Anton Ertl gave a talk
demonstrating the implementation of super instructions in
Gforth. Instruction sequences are recognised below the level
of comma (compilation). lit 5 + is converted to lit+ 5.
Gforth's built-in disassembler was used to demonstrate the
code generated, including cases where attemps at
optimisation are frustrated by the compiler "register spilling".

We had a short workshop on parsing set expressions with demo by Daniel
Ciesinger, and an extended workshop on applying static typing.

Many thanks to Anton Ertl for organising a wonderful conference and being a
perfect host.

Nick Nelson and Micro-Ross have offered to organise the 19th euroFORTH at
Ross on Wye with possible visits to laundries and car plants to see Forth in
serious action! Many thanks to them and see you there.

Bill

 euroFORTH 2003 is held in the UK. For announcements, join the

mailing list at euroforth-subscribe@yahoogroups.com.

Bill Stoddart

Anton Ertl

 27

Word Completion for Quikwriter
Project

Chris Jakeman

In support of the Quikwriter project, I undertook to experiment with
algorithms to save keystrokes. Here is a report of progress so far.

Introduction
The aim is to make the computer easier to use by offering word completion to
reduce the number of keystrokes needed to create text. This is intended to help
disabled users of the Quikwriter keyboard, but it might help any keyboard user.
The algorithm described here is called MinType and could be implemented by
the F11-UK Forth board which modifies the stream of keystrokes being sent from
the keyboard to the PC.

Experimental Platform
The experiments are carried out using Microsoft Word programmed in VBA.
Programming Word is not without problems but it has several advantages,
including a very fast search back through a document. It also lets us display any
extra characters inserted in colour (shown below with underline added).

Since this project was started, many of us have become familiar with "predictive
text" on mobile phones. This works very differently from MinType to overcome
the problems of using just 10 keys to enter the whole alphabet with punctuation.
Some phones also provide word completion, but MinType should do much better
by working with the current document backed up by a personal vocabulary.

Non-Intrusive Operation
Several similar schemes can be downloaded for Windows PCs. The most
promising ones also had awkward interfaces. In contrast, MinType succeeds in
being pretty unobtrusive. To benefit from MinType, you will have to press a
single well-chosen key. If you choose to ignore the "expansions" that MinType
offers, then just keep typing and the expansion will disappear.

Predictive Operation
MinType watches what you type. As soon as a word has grown to 3 characters
long, MinType searches for a suitable expansion and adds the expansion in red.
If the expansion is appropriate, you can accept it by MinType key - Ctrl-Space
seems most effective for this. If not, type another character and MinType will
offer an alternative expansion. For example:

 28

expansion
experiment
experimental

Here the user types "exp" as the stem of "experiment" and is offered "ansion". He
ignores the offer and types "e". The offer is withdrawn and replaced by "riments".
Again the user ignores the offer and types "r". The offer is replaced by "imental"
which the user accepts by pressing the MinType key. Finally MinType appends a
space character.

Including the MinType character, the user typed 6 characters and saved 7.

The current experiments are designed to record how good MinType is at
offering the expansion you wanted and how many keystrokes can be saved in
doing real work. We record:

! the accuracy - whether MinType could offer the correct expansion.
! the performance - the proportion of expansions that are rejected.
! the saving - the proportion of keystrokes the user saves.

Making Good Predictions
MinType uses two searches to find an expansion for the root you have typed.

The primary search looks back through the current document to find the nearest
word which shares the same root. If you reject the expansion MinType has
offered it notes the rejected expansion on a list and searches further back for an
alternative. This "context search" is more likely to find the desired expansion
than searching a standard vocabulary because it contains fewer inappropriate
words. The scope of the search is limited to about 10,000 characters to avoid
delays when searching large documents.

If MinType finds nothing appropriate using the primary search, it switches to
searching a personal vocabulary. Words are added to this vocabulary as follows.
If you accept a MinType expansion, then the expanded word is automatically
appended to a file of words with the same 3-letter root. This file ends up
containing a list of words that have been used at least twice. MinType searches
these files backwards from the end, thus finding the more recently used words
first. This personal vocabulary grows from nothing to contain the words which
you used recently.

Word Endings
MinType has to treat the ending of words with special care as an English root
may take multiple endings such as:

 expand expands expanding expanded expanse expansion expansions

 29

It does this by recognising common endings and offering the whole expansion
with the ending highlighted and requiring two key-presses of Ctrl-Space to adopt
both parts.

Increasing the Savings
This scheme offers real savings but 4 keystrokes are still required for every
expanded word. This limits the savings achievable.

The simplest way to improve on this is to offer the user expansions after he types
just the first keystroke. These expansions are taken from a form completed by
user with single entries for the letters "A" to "Z" and "a" to "z". The user can
choose to have these offered automatically (which might be intrusive) or when
he presses the Ctrl-Space key.

A more interesting option is to store pairs of words in the personal vocabulary.
As soon as the user has accepted a word expansion, he can be offered the next
word at once. This is especially useful for titles such as "Forth Interest Group"
which would require just 6 keystrokes.

Writing Source
The Context Search is especially suitable for writing source code as this tends to
repeat words defined earlier in the file. I look forward to trying this with Forth.

Experimental Results
MinType is currently accumulating a Personal Vocabulary based on my personal
use of Word. It saves statistics as the vocabulary grows and I expect to see trends
as more words are added. These will be reported in a future issue.

 30

Nominations for the

FIG UK Awards - 2002

To nominate your candidate, send in a note of
who, in your opinion, most deserves an award and
why. The recipient of each award will receive a
place in the FIG UK web-site's Hall Of Fame, a
mention in Forthwrite and a year's free
membership.

The Achievement Award is given to the member
who has made the best contribution towards Forth
during 2002. The contribution may be a presented
paper, a library of code or an idea which inspires
others. Whatever form it takes, the contribution
must support the goals of FIG UK.

The Forthwrite Award is given to the member who
has made the best contribution to Forthwrite
magazine during 2002. The contribution may be
judged on quality of writing, tutorial potential,
entertainment value or other criteria which the
Forthwrite Team deem appropriate.

The awards are judged by the officers of FIG UK.
All who are members on 31st Dec. 2002 are eligible
(except the judges).

Free
membership

Achievement

Forthwrite

The FIG UK Awards of 2001 were won by Chris Hainsworth
and Dave Pochin. These awards are given to encourage

effort and recognise achievement.
Please take the time to look back over the past year and

send in your personal nominations for 2002.

 31

01733 352373

cjakeman@bigfoot.com

AGM Report

Doug Neale offered his hospitality once again � thanks Doug and to Mrs.
Neale too.

Changes to Committee
No changes this year - all our officers are willing to serve for the next year.

Review of Past Year
Our web-site continues to be key resource. Jenny has added a site map and a
search facility and it now provides the world's first global index of Forth source
code.

Our list of web-site subscribers (who have signed up to be notified of
changes) is also growing. IRC also continues to go well, with a good mix of regulars
and visitors, including Forthers from overseas.

The Forthwrite Team continues to publish regularly with a wide range of
material and we are grateful to the newest members of our team, Henry Vinerts and
Joe Anderson.

The finances, as reported in the last issue, are still in balance and look
healthy. Membership continues to be stable with around 110 members, many of
whom are very active.

Plans for Next Year
The big event in 2003 is euroFORTH, to be held in the UK this time. We want FIG UK
to play a role this time round and will encourage all our members to attend.

 32

Using Wordlists for Many[
Jenny Brien and Chris Jakeman

Following the definition of Many: in the previous issue, here is an
alternative definition, Many[, which makes use of a short wordlist. As

wordlists often seem to be overlooked by Forth programmers, this
technique is worth exploring.

An algorithm driven from a set of data is often simpler to maintain than the
equivalent sequence of if .. else .. thens. This is usually called data-driven
programming and Forth lends itself to this style. Examples include State
Machines2 and Brad Rodriguez BNF parser3.

Many[is provided to apply a word repeatedly until it reaches the terminator "]".
For example:

: enums4 (n -- n+1) DUP CONSTANT 1+ ;

1 Many[enums jan feb mar apr
 may jun jul aug (comment starts
 comment ends) \ more comment
 sep oct nov dec] drop

In this article, a special short wordlist is created to hold the 3 words which were
recognised above and treated specially by Many[. These are the comment words
"(", "\" and the terminator "]". ("]" is perhaps a better choice than the ";" used
by Many:). Some Forth users have special comment words, eg (* .. *) and it
would be easy to add these to the list without changing the definition of Many[
in any way.

wordlist constant ManyWordlist \ Create an empty wordlist

get-current \ Save current compilation wordlist
 ManyWordList set-current
 : (postpone (;
 : \ postpone \ ;
 :] -1 throw ;
set-current \ Restore saved compilation wordlist

2 Graeme Dunbar in Forthwrite Jul/Aug/Oct 1998 and Julian Noble in Forth Dimensions Sep 1998.
3 1988 and documented by Bernd Paysan at http://www.jwdt.com/~paysan/screenful.html
4 "enum" is a keyword in some programming languages being short for "enumeration" and meaning a

numbered list.

 33

The definition of] is explained later. Note that (and \ do exactly what they
have always done. ANS Forth provides wordlist to create a list identified by an
integer known as a "wid". set-current is used to change the wordlist into
which new words are compiled.

Jenny has provided two parsing words which factor out some useful
functionality. NextWord signals the end of the input stream in a way which can
be tested easily. Although ANS Forth provides a comprehensive mechanism for
rewinding the input stream (SAVE-INPUT N>R and NR> RESTORE-INPUT), this is
overkill when the need is occasionally to re-read a single word and Jenny
provides UnWord for this purpose.

: NextWord (-- ca u) get next word, REFILLing if needed
 begin \ if at end of input then ca u = 0 0
 bl word count
 dup 0= while
 2drop
 refill 0= until
 0 0 \ If the REFILL fails at end-of-file
 then
;
: UnWord (n --) set >IN to before last word parsed
 \ n is length of word
 1+ \ Allow for delimiter
 >in @ swap - \ Calc characters to unread
 0 max >in ! \ Extreme case - no blanks
;

Now we can define Many[which uses the standard search-wordlist to look up
each word from the input stream in ManyWordList. It is important that Many[
should not leave anything on the Data Stack when executing an xt. In our enums
example this would give the wrong result.

: Many[(--)
 ' >r begin \ Keep stack clean for CATCH
 NextWord dup 0= abort"] missing after Many[" \ End-of-file
 tuck \ Save length for UnWord
 ManyWordlist search-wordlist if
 nip \ Leave xt found for CATCH to execute
 else
 UnWord r@ \ Rewind input, get saved xt for CATCH
 then
 catch until r> drop
;

Note the use of CATCH instead of EXECUTE. When Many[finds the terminator]
and executes it,] throws an exception which gets us out of the loop. This might
be seen as an abuse of the CATCH .. THROW mechanism, which is provided to

 34

handle exceptions and should not be invoked during normal operation. With this
in mind, Jenny has provided an alternative using an exit flag as follows.

First, we redefine]

 : ((ExitFlag � ExitFlag) postpone (;
 : \ (ExitFlag � ExitFlag) postpone \ ;
 :] (ExitFlag � ExitFlag) 0= ;

Then Many[becomes:

: Many[(--)
 ' >r begin \ Keep stack clean for EXECUTE
 NextWord dup 0= abort"] missing after Many[" \ End-of-file
 tuck \ Save length for UnWord
 ManyWordlist search-wordlist if \ If listed word
 nip false swap execute \ Bury exit flag
 else
 UnWord r@ execute false \ Rewind input, do not exit
 then
 until r> drop
;

 35

Henry Vinerts
Volvovid@aol.com

Across the Big Teich
Henry Vinerts

This material was prepared for Vierte Dimension by Henry Vinerts,
and printed by kind permission of Forth Gesellschaft (German FIG)

FIG Silicon Valley Chapter Meeting - Sep 2002

 Greetings!
 After a six-week break, SVFIG was "back-to-school" again. I
believe I have mentioned before that Cogswell College
(http://www.cogswell.edu), one of the oldest polytechnic
colleges in the San Francisco area, offers a pleasant and
convenient place for our meetings. It seems to me that it is one
of the few remaining examples of "Small is beautiful,"
disregarding, of course, the ample parking space around the
building.
 Forthers are not any different from 'normal' people when it
comes to arriving on time, and quite often even the scheduled
speakers are not there at 10 o'clock, in which case Dr. Ting fills
in. This time Dr. Ting was absent but Henrik Thurfjell was ready
to describe the development of a product that he and John
Peters had carried from the concept sketched on the back of
a napkin to a demonstrably workable stage. It is an electrician's
instrument for tracing circuits in buildings.

Inputs from current-sensing probes on the wires at the
circuit breakers are processed through a board with an 8051
chip speaking modified AMR Forth. Voice-message outputs go by
radio to the technician in the building, as he walks around
changing the loads in the various circuits by turning on lights,
appliances, or plugging lamps into outlets. Thus a usual two-
person job can be done in less time by one. Henrik's talk
generated plenty of discussion and idea-swapping with the
audience to last the two hours until lunch.

 36

In the afternoon, Tim Duncan, the director of the Digital
Audio Technology department at Cogswell College, described a
course program that he had proposed for the curriculum, which
would favor Forth over C and LISP among the languages
preferred by musicians working with digital audio. He invited
SVFIG to offer help and ideas for the Forth instruction that
would go with the course. I believe that thanks to Tim Duncan's
partiality to Forth we have enjoyed Cogswell's hospitality for
over six years now.

To top off the day, at 3pm most of us took off for a
scheduled tour of the Computer History Museum, which is
located next to the prominent airplane hangar in nearby Moffett
Field/NASA Ames Research Park.

The Computer History Museum was established here in
1996, taking over most of the collection previously housed in a
museum in Boston5 Presently only about 10% of the over 3500
artifacts are visible to the public, but expansion to a larger
building is in the plans. Our curator turned out to be an old
Forther, LaFarr Stuart (cf. Forth Dimensions, May/June 1980.
p.2), who made our visit especially interesting and nostalgic. For
you, my friends, I suggest a visit via
http://www.computerhistory.org/exhibits/, and going further to
highlights/ you can pick your favorites among the MITS Altair
8800, the Cray 1A, the Wehrmacht's Enigma, the 1972 Xerox
PARC Alto, the Apple-1, or a number of others. Better yet, visit
us at SVFIG and we'll take you to the museum.
 A final news item overheard at the meeting: Chuck Moore and
his wife have sold their house in Silicon Valley and moved up to
Sierra City, above the snow line in the California foothills. Happy
hiking and skiing, Chuck!

5 The guidebooks misled me during a holiday in Boston last year. I paid good money to find the

exhibits missing. Glad it's got a good home - Ed.

 37

FIG Silicon Valley Chapter Meeting - Oct 2002

Hello, Friends,

This report will be short, as was our October meeting. I have
told you before, that without Dr. Ting and George Perry the
SVFIG engine runs on fewer than the full complement of
cylinders, or as we say in Yankee parlance: "It misses." Ting was
out of town and George, being "under the weather," begged off
from running the meeting and left as soon as he knew that Jay
McKnight, being the "tallest in our midst", would keep the show
going.
Anyway, John Peters held on to a few of us in the morning,
showing us how he could quickly communicate over the Internet
with all of the aficionados of Win32Forth. If there are any such
Forthers out there who have not yet joined in polishing Forth
for Windows, by all means they should get in touch with John.
The afternoon group grew close to 20 to listen to Al Mitchell,
who abandoned Windows two years ago. He was here with
physical evidence of the Forth Stamp that he is developing, and
I have written to you about that in the July Forthwrite. A few
key words is all I will mention now: PIC, C8051F017 and
C8051F300 from Cygnal, Linux, GForth, GUI in TCL, amrBASIC,
fuzzy logic. Al's Forth Stamp is up to 500 times faster than
Parallax's Basic Stamp. Al's own AMRForth rev.6 will be on his
website in a month, and you should visit
http://www.amresearch.com/ if you wish to know more
about BASIC running on Forth.
 We quit the meeting early to go to the Vintage Computer Fair
at nearby Moffett Field. Perhaps a couple of dozen exhibitors
there with all kinds of early machines. My first look at the APL
keyboard and KIM-1 running a chess program. I met Hans Franke
next to a sign drawing attention to http://www.gfhr.de/

 38

(Gesellschaft fuer historische Rechenanlagen), and he told me all
about the good computer stuff one can find on Schillerstrasse in
Munich. I'll have to ask Dr. Behringer to tell me about that.

That's it for this month. Tschuess!
Henry

FIG Silicon Valley Chapter Meeting - Nov 2002

Hello, Forth friends!

"The second annual FIG Convention was a big success with 250
FORTH users, dealers, and enthusiasts attending a full day of
sessions on FORTH and FORTH-related subjects. The Villa
Hotel in San Mateo, CA, provided the setting this year."

I am quoting from Volume II No.5 of Forth Dimensions, the

issue for January/February 1981. Twenty-two years later the
Villa Hotel is still there, the tradition to hold Forth Days in
November at Thanksgiving time is still carried on by Silicon
Valley Forth Interest Group, and, although the group of
attendees has shrunk to about a tenth of the above-mentioned
size, Charles Moore still delights them with talks about his
brainchild and, if I may say so, brain-grandchildren, such as
ColorForth.

I regret that I could attend only the morning session of
the SVFIG Forth-Day meeting on November 16th and had to
miss Dr. Ting's traditional lunch-time barbecue, as well as
Chuck's Fireside chat at the end of the day. I did hear Jeff
Fox's presentation on his and Soren Tiedemann's Forth GUIs
and OSs, both of which duplicate most of the common Windows
features with 400 to 600 words of Forth code. I quote Jeff: "It
is faster to write your own code than go to Windows and try to
find the desired function. When you do all in Forth yourself, you
have control over all abstractions. Don't use more layers of
abstractions than you need." Readers can find more information

 39

about Jeff's Aha at http://www.ultratechnology.com/aha.htm
and Soren's Allegra compilers at http://www.planet-
interkom.de/soeren.tiedemann

Dr. Ting followed Jeff with a demonstration of F# (F-
sharp, as in music) running in Chinese on a Windows XP machine.
The platform has been chosen by the Taiwanese, with whom Dr.
Ting has collaborated for some time now, but F# comes from
his own eForth, after he had tried and rejected Win32Forth as
being too complicated.

The project involves generation of Chinese characters
and development of Forth that non-English speaking Chinese,
especially young children, can use as introduction to programming
and to Forth itself. By redefinition with "alias" Ting has given
Chinese names to all Forth words that are needed, so that even
3rd-grade schoolchildren can already construct their own
programs. A great tool for those who are handicapped by lack of
English! To quote Dr. Ting: "Forth is the best language for any
foreign tongue."

I wish I could end with a quote from the day's talk by
Chuck, but, since I missed it, let me repeat what is written in
the Forth Dimensions of 1981:
"Following a panel session on the FORML conference at Asilomar,
Charles Moore of FORTH, Inc., closed the morning session with a
reminder that it is the very flexibility and versatility of FORTH
which will cause more problems as more people become
acquainted with it." I am hoping that this will generate some
comments from our readers.

Sincerely,
Henry

 40

Joe Anderson
0131 662 4007

jia@jia.abel.co.uk

Vierte Dimension 3/2002
Joe Anderson

Editorial
Friederich Prinz Instead of an editorial, this time something light-hearted on

operating systems.

Readers' Letters
Klaus Sobawa

Eleven inputs about this and that, from Leg-REX ("hard" and
"soft") about the estimated computational capacity of the
Universe as a "system", up to hiring of micro-controllers.

News from FIG Silicon Valley
Henry Vinerts

Three reports on the Forth activities of the US continuation
group from Silicon Valley and a request from the Editor of
Vierte Dimension (Fritz Prinz) to Henry, to continue as
heretofore with his stories depicted in such personal colours.

MicroCore

Klaus Schleisiek
Klaus.Schleisiek@hamburg.de

"An open-source, scalable, dual-stack, Harvard processor
synthesiable
VHDL for FPGAs".

RCX on line
Adolf Krüger and
Michael Kalus

It was really not easy to see why the Lego-RCX had to be
controlled over an IR transmitter, if two wires should suffice.
In Martin Bitter's school activities more and more RCXs had

Joe provides a look at the latest issue of the German FIG
magazine. To borrow a copy or to arrange for a translation of an

individual article, please call Joe.

 41

to be loaded at the same time, and then each interfered with
the others. The two authors have developed a splendid circuit
with an opto-coupler, which fits into the RCX and solves the
problem.

The Ushi Working Group

Willem Ouwerkerk

Presentation by Willen, the president of the Dutch Forth
Group, on the recent Forth conference in Garmisch-
Partenkirchen about the Dutch home-built robot project.
Translated by Fred Behringer.

TO - A function with many posssibilities
Albert Nijhof Presentation by Albert, the editor of the Dutch Forth

magazine "Vijgeblaadje", on the recent Forth conference in
Garmisch-Partenkirchen about a generalisation of the
concepts understood by VALUE in ANS-Forth. For the
extension DOES> has to be adapted.
Translated by Fred Behringer.

A call to Assembly (2/3)
Julian Noble

The second part of a tutorial by the author on the easy use of
assembler in Forth. Translated by Fred Behringer. The article
appeared in its original version in Forthwrite 114.

VD List of Contents (Part II)
Fred Behringer
behringe@mathematik.tu-

muenchen.de

The second part of Fred's comprehensive list of all articles
that have been published up to now in Vierte Dimension (6
pages). The list is in subject groups, and within each subject
group arranged in date order ofappea rance, and containing
in addition authors and title. The whole lay-out of this list has
been modelled on the Index List from Forthwrite.

Instant
Jens Wilke Contribution from the author on the Forth conference in

Garmisch-Partenkirchen:
The Instant project is a development of the cross-compiler,
that enables ANS-Forth compatible programmes to run via a
cross-compiler without having to be modified.

FINDRAMD.COM - Assembler programming in Forth
Fred Behringer
behringe@mathematik.tu

-muenchen.de

This is once more entry in Fred's "Column for language
migrants". The program FINDRAMD.EXE is to be found on a
Windows98 emergency boot diskette and it enables the
assignment of a drive letter to a created RAM-disk. The hard
disk on the machine may have several partitions and in order
to copy necessary files to the emergency RAM-disk one must

 42

know the relevant drive letters. FINDRAMD.EXE does all this
and is 6855 bytes long. FORTH-assembler can be quickly
used to generate a program FINDRAMD.COM which is only
20 bytes long ! (It should in fairness be pointed out that the
FINDRAMD.EXE program does include error trapping and
error messages.)

MuP21/F21-Bootprocess

Soeren Tiedemann The author discusses the installation, memory map and bus-
logic, 8-bit bootmode, boot routines, and software of the
above processor in what is intended to be a series of articles.

Pontifex

Friederich Prinz
Friederich.Prinz@t-

online.de

Pontifex refers to the building of a bridge between Heaven
and Earth. Fritz lightheartedly discusses a demo version of a
program for the "virtual construction of bridges" for would-be
bridge constructors available by download from
http://www.chronilogic.com .

 43

Dutch Forth Users Group

Reading Dutch is easier than you might think. And as Forth is an
international language, reading Dutch code is easier still for a Forth

enthusiast. Are you interested? Why not subscribe to

HCC-Forth-gebruikersgroep

For only 20 guilders a year (£6.30), we will send you 5 to 6 copies
of our "fig-leaf" broadsheet 'Het Vijgeblaadje' . This includes all our

activities, progress reports on software and hardware projects and
news of our in-house products.

To join, contact our Chairman:
 Willem Ouwerkerk
 Boulevard Heuvelink 126
 6828 KW Arnhem, The Netherlands
 E-Mail: w.ouwerkerk@kader.hobby.nl

The easiest way to pay is to post a 20 Guilder note direct to Willem.

 44

Forthwrite Index

Jenny Brien maintains a set of 3 indexes to Forthwrite on the FIG UK web site and updates
them with each new issue. These indexes are sorted by date, by author and by subject
going back to 1990. The subject index is published in the magazine annually (below), with
this year's new entries highlighted.

Back issues of Forthwrite may be borrowed from the Library without charge, so this is a
good way to catch up on topics of special interest. If you spot a topic that has not been
adequately covered, please drop a line to the Editor.

Forthwrite Subject Index 1990-2002

Subject Author Date Title

algorithms Hersom, Ed 92-10 Advanced course

algorithms Charlton, Gordon 93-04 Backwards (psychic programming)

algorithms Hersom, Ed 93-04 Trees & splines

algorithms Hill, Will 93-06 Solving with Newton-Raphson

algorithms Payne, John 93-12 Approximate pattern matching

algorithms Bennett, Paul 94-06 Fuzz, fibs and forms

algorithms Pochin, David 94-10 First attempts at Fuzzy Logic

algorithms Bennett, Paul 95-06 Fractionally angular

algorithms Charlton, Gordon 95-06 Easter Sunday

algorithms Ramsay, Chris 99-08 Forth and Genetic Programming

applications Green, Roedy 90-08 Abundance (database)

applications Brien, Jack 91-02 Typing tutor (code)

applications Kendall, Les 91-02 Terminal emulator for PC (code)

applications Smith, Graham 91-02 Logic gates

applications Grey, Nigel 91-06 Big Blue on the move IBM CAD (review)

applications Franin, Julio 92-08 Torsion measurement system

applications Stephens, Chris 93-08 Seven thousand networked micros

applications Anderson, Joe 98-07 Forth In Space

applications Trueblood, Mike 99-11 Radio Clock

applications Bennett, Paul 00-08 Logging on - statistically speaking

applications Paysan, Bernd 00-08 A Web-Server in Forth

applications Matthews, John 01-01 Forth as Preferred Development Environment

applications Kendall, Les 01-01 XML and Forth

applications Wong, Leo 01-04 Solving a Riddle

applications Brien, Jenny 01-07 "Quikwriter" proposal

 45

applications Anderson, Joe 01-07 Forth for NEAR Spacecraft

applications Fowell, Jeremy 01-09 "Quikwriter" Project Launch

applications Brien, Jenny 02-01 JenX revisited - A Simple XML Parser
applications Brien, Jenny 02-04 Flickwriter Project
applications Paysan, Bernd 02-09 Competitive Programming
arithmetic Jakeman, Chris 90-12 A high-level /MOD (code)

arithmetic Preston, Philip 91-02 Multi-cell arithmetic (code)

arithmetic Filbey, Gil 91-04 Tutorial

arithmetic Haley, Andrew 91-04 Function approx. by Chebyshev series

arithmetic Filbey, Gil 91-12 Mixed point arithmetic (tutorial)

arithmetic Payne, John 91-12 Fixed point arithmetic (word set)

arithmetic Filbey, Gil 92-02 Mixed point arithmetic (tutorial)

arithmetic Filbey, Gil 92-04 Mixed point arithmetic (tutorial)

arithmetic Brown, Jack 92-10 Floored v symmetric division (tutorial)

arithmetic Filbey, Gil 93-02 Floating point

arithmetic Filbey, Gil 95-02 Cube roots

arithmetic Bennett, Paul 97-02 From the 'Net - Square Roots (code)

arithmetic Hersom, Ed 98-07 Quad (Fixed-Point) Arithmetic

arithmetic Behringer, Fred 00-04 32-bit GCD without Division

arithmetic Pochin, Dave 00-06 Floating Decimal Fudge

arithmetic Jakeman, Chris 02-09 Linear Interpolation
arrays Jakeman, Chris 90-08 Arrays and records (code)

arrays Brien, Jack 92-02 Ways with arrays (code)

assembly Tanner, P. 96-05 Linking machine code modules with Forth

block tools Filbey, Gil 91-02 Bits and loading blocks (tutorial)

block tools Hainsworth, Chris 91-02 Editing blocks (tutorial)

block tools Charlton, Gordon 94-04 One-screen library load (code)

bons mots Bezemer, Hans 97-08 Th

bons mots Eckert, Brad 97-08 On Off On? Off?

bons mots Luke, Gary 97-08 Tally

bons mots Hersom, Ed 97-11 NVars [H] [D]

bons mots Payne, John 97-11 3rd Swap@ Sgn #>ASCII

bons mots Wenham, Alan 97-11 Z

bons mots Elvey, Dwight 98-01 Setting bits with MASK

bons mots Wenham, Alan 98-01 Printing binary with .SB U1B. U2B.

bons mots Hoyt, Ben 98-03 PLACE is to COUNT as ! is to @

bons mots van Norman, Rick 98-03 MANY for debugging

bons mots Wong, Leo 98-05 Laying down values with COURSE

concurrency Charlton, Gordon 91-10 Co-routine monitors (code)

concurrency Charlton, Gordon 94-04 One-screen concurrent Forth (code)

control flow Charlton, Gordon 90-04 Universal delimiter (code)

 46

control flow Brien, Jack 91-02 Extended ANS structures (F83 code)

control flow Bennett, Paul 91-04 High level FOR..NEXT (code)

control flow Carpenter, R.H.S. 92-12 Flow-charting method

control flow Preston, Philip 93-06 Shortcuts and drop-outs

control flow Brien, Jack 94-06 Extending ANSI control structures

control flow Brien, Jack 95-06 Portable control structures

control flow Charlton, Gordon 95-06 Trouble with DO

control flow Jakeman, Chris 96-05 If and begin - ANS style

database Filbey, Gil 91-08 FIG UK database (tutorial)

database Filbey, Gil 91-08 FIG UK database (tutorial)

design Payne, John 90-12 Simpler Forth (comment)

design Brien, Jack 91-10 Return stack ENTER ISNOW and aliasing

design Thomas, Reuben 92-06 Forth lifestyle

design Hersom, Ed 92-10 NVARS

design Charlton, Gordon 93-04 Upside down

design Smart, Mike 93-10 Computer Shopper Programmer's Challenge

design Matthews, John 94-02 On his September lecture

design Bennett, Paul 94-08 Taking exception ...

design Hersom, Ed 94-08 Simple user interface

design Flynn, Chris 94-10 Numerical input

design Allwright, R.E. 95-06 Pagination

design Jakeman, Chris 95-06 From the 'net

design Telfer, Graham 96-05 The specification method hunt

design Brien, Jack 99-01 Working with Wordlists

design Brien, Jack 99-06 Handling Literals

design Telfer, Graham 99-06 Skeletons - Designing a Recursive Application

design Telfer, Graham 02-07 Expanding the Use of the Stack
dynamic data Charlton, Gordon 90-04 Dynamic words (code)

dynamic data Charlton, Gordon 94-06 Work, rest and play

editing tools Jakeman, Chris 90-02 Search and replace 1/2 (code)

editing tools Jakeman, Chris 90-04 Search and replace 2/2 (code)

editing tools Lake, Mike 91-02 Full screen editor in one screen (code)

editing tools Brien, Jack 95-06 Full screen editor

editorial Hainsworth, Chris 91-04 Forthtalk and EuroFORML report

editorial Jakeman, Chris 92-08 Soapbox - "Do it yourself"

editorial Payne, John 92-12 Fat, thin or inflatable?

editorial Wilson, R.J. 93-06 Seeing trees in the wood

editorial Rush, Peter 95-02 Honeywell Forth Bulletin Board

editorial Jakeman, Chris 96-05 From the 'net - perceptions

editorial Hersom, Ed 96-07 Why Forth?

editorial Jakeman, Chris 96-11 Sell-by-date

 47

editorial Jakeman, Chris 97-02 FIG UK joins the World Wide Web

editorial Jakeman, Chris 97-02 Welcome Disk

editorial Brien, Jack 97-08 FIG UK Web Site

encryption Greenwood, Mike 98-03 File Encryption

exceptions Charlton, Gordon 91-04 CATCH and THROW (code)

exceptions Jakeman, Chris 93-10 Portable CATCH and QUIT (code)

exceptions Jakeman, Chris 93-10 Using CATCH and QUIT (code)

FANSI project Bennett, Paul 90-06 Time for a new FIG Forth (comment)

FANSI project Charlton, Gordon 90-10 High-level /MOD using recursion (code)

FANSI project Charlton, Gordon 90-10 High-level multiply (code)

FANSI project Flynn, Chris 90-10 Discussion on REQUIRES

FANSI project Hainsworth, Chris 90-10 FANSI that (proposal)

FANSI project Bennett, Paul 90-12 FANSI environs (proposal)

FANSI project Flynn, Chris 90-12 Response to design proposals (comment)

FANSI project Payne, John 90-12 Response to design proposals (comment)

FANSI project Charlton, Gordon 91-06 FANSI definitions (code)

FANSI project Charlton, Gordon 91-08 FANSI bloomers (code)

FANSI project Payne, John 91-08 Notes on FANSI (code)

FANSI project Bennett, Paul 91-10 Report on FANSI

FANSI project Charlton, Gordon 91-12 FANSI vocabularies (proposal)

FANSI project Brien, Jack 92-02 FANSI (comment)

FANSI project Payne, John 92-02 FANSI (comment)

FANSI project Preston, Philip 92-02 FANSI (comment)

FANSI project Payne, John 92-12 FANSI QUIT

file tools Brien, Jack 91-02 Loading dependant source (code)

file tools Jakeman, Chris 93-02 File access, part 1 (code)

file tools Jakeman, Chris 93-04 File access, part 2 (code)

file tools Jakeman, Chris 93-06 File access, part 3 (code)

file tools Jakeman, Chris 93-08 File access, part 4 (code)

file tools Brien, Jack 95-10 Hierarchical screen filing

file tools Wong, Leo 98-10 ANS File Words for Pygmy Forth

file tools Behringer, Fred 99-01 ANS File Words for Turbo Forth - 1

fractions Charlton, Gordon 90-02 Vulgar words (code)

fractions Wilson, R.J. 90-04 Rational numbers (code)

fractions Wilson, R.J. 90-06 Transcendental rationale (code)

fractions Charlton, Gordon 90-10 Rational approximation (comment)

futures Jakeman, Chris 94-08 Telescript (comment)

futures Jakeman, Chris 94-10 Some future directions (editorial)

futures Jakeman, Chris 96-11 Forth and Java (comp.lang.forth)

futures Pelc, Stephen 99-11 FIG UK - The Next 20 Years

futures Jakeman, Chris 02-01 The Semantic Web

 48

graphics Filbey, Gil 90-04 Plotting spirals (tutorial)

graphics Charlton, Gordon 92-06 Turtle graphics

graphics Payne, John 92-08 Flood fill

graphics Charlton, Gordon 93-08 Drawing a line

graphics Charlton, Gordon 93-10 Not drawing a line

graphics Payne, John 93-10 How Bresenham's line drawing alg. works

graphics Pochin, Dave 00-11 "BLT is not a Sandwich"

hardware Koopman, Philip 90-10 RTX 4000 (publicity)

hardware Fowell, Jeremy 92-08 P20 chip, part 1/2

hardware Fowell, Jeremy 92-10 P20 chip, part 2/2

hardware Bennett, Paul 96-07 Chuck's chips

hardware Fowell, Jeremy 99-01 FIG UK Hardware Project

hardware Fowell, Jeremy 99-04 FIG UK Hardware Project - Progress

hardware Heuvel, Leendert 99-04 The 'Egel Coursebook

hardware Fowell, Jeremy 99-08 FIG UK Hardware Project - Progress

hardware Fowell, Jeremy 99-11 FIG UK Hardware Project - Progress

hardware Fowell, Jeremy 00-01 F11-UK Hardware Project - Progress

hardware Fowell, Jeremy 00-04 F11-UK Hardware Project - Progress

hardware Fowell, Jeremy 00-08 F11-UK Hardware Project - Launch

hardware Jakeman, Chris 01-01 F11-UK Hardware Project - Progress

hardware Jakeman, Chris 01-04 F11-UK Hardware Project - Progress

history Rather, Elizabeth 95-04 The evolution of Forth

history Rather, Elizabeth 95-12 The Forth approach to operating systems

history Hainsworth, Chris 99-01 Forthwrite Issue No. 1 revisited

history Powell, Bill 99-01 The Birth of FIG UK

history Behringer, Fred 99-11 Swap Dragon

history Brien, Jack 99-11 FIG UK - The Last 20 Years

history Jakeman, Chris 00-01 Did you Know? - EasyWriter

history Jakeman, Chris 00-04 From the 'Net, Forth for Novell

history Crook, Neal 00-06 The Canon Cat

history Jakeman, Chris 00-06 Did you Know? - Forth OS

history Jakeman, Chris 00-08 Computer Conservation

history Jakeman, Chris 00-08 Did you Know? - Forth v C

history Jakeman, Chris 00-11 Did you Know? - Open Firmware

history Jakeman, Chris 01-09 Did you Know? - smart cards

history Jakeman, Chris 01-11 Did you Know? - large Forth projects

history Jakeman, Chris 02-04 Did you Know? - Forth Help Nobel Prize Winners
history Moore, Charles 02-09 Forth - The Early Years
humour Payne, John 90-12 A program that works the French way

humour Smith, Graham 95-06 Book titles

humour Jakeman, Chris 96-05 From the 'net - a drinking song

 49

humour Allwright, Ray 98-05 A Story of Cowboys

humour
Gassanenko,
Michael 02-01 From the 'Net - the non-English view

interfacing Robinson, Dave 91-08 Mouse handling (F83 code)

interfacing Bennett, Paul 98-05 Reading the World - 1

interfacing Bennett, Paul 98-07 Reading the World - 2

interfacing Bennett, Paul 98-10 Writing the World - 1

interfacing Bennett, Paul 99-01 Writing the World - 2

internals Hainsworth, Chris 90-02 Kiss and run (exploring F-PC)

internals Charlton, Gordon 91-02 A replacement for DO .. LOOP (code)

internals Flynn, Chris 91-06 Forth engine on 68000

internals Bennett, Paul 92-10 Top-down development of a Forth system

internals Bennett, Paul 93-04 QUIT, the story continues...

internals Preston, Philip 93-12 RatForth - ANS on F83

internals Preston, Philip 94-02 Ratforth revised etc.

internals Preston, Philip 94-06 Redefining colon

internals Preston, Philip 94-10 Simulating EVALUATE

internals Preston, Philip 95-10 Variables, values & locals

internals Wenham, Alan 95-12 Meandering Forth

internals Brien, Jack 97-08 Building a new inner interpreter

internals Allwright, Ray 98-03 From the 'Net - Minimal word sets

internals Allwright, Ray 99-04 From the 'Net - Turnkey Apps and Docs

internals Tasgal, John 00-04 An Introduction to Machine Forth

internals Brien, Jenny 01-09 Treating Data as Source

interpreting Jakeman, Chris 95-10 From the 'net - text interpreter

interpreting Brien, Jack 96-11 Implementing an outer interpreter

interview Moore, Charles 99-06 1xForth

interview Lawless, Jim 01-11 An interview with Tom Zimmer

interview Morrison, George 01-11 Charles Moore interview on Slashdot

library Hainsworth, Sylvia 91-04 FIG UK library bulletin

library Jakeman, Chris 96-11 Library assets

library Hainsworth, Sylvia 98-05 Purchases and current publications

logic Behringer, Fred 01-07 Arithmetized Logic in Forth

MCFAs Brien, Jack 90-08 Comment

objects Jakeman, Chris 94-12 Objects and so forth

objects Jakeman, Chris 98-11 OOF - A Minimal Approach

objects Prinz, Friederich 99-01 Counting Fruits the Classic Way

objects Jakeman, Chris 02-01 A Safer Mini-OOF
performance Jakeman, Chris 98-01 From the 'Net - Speed Demons

permutations Charlton, Gordon 90-02 Permutations, a new algorithm (code)

permutations Hersom, Ed 91-10 Permutations (code)

 50

permutations Hersom, Ed 92-04 Permutations/combinations

permutations Baden, Wil 00-11 Permutation by Transposition Sequence ACM 115A

permutations Jakeman, Chris 00-11 Simple Forth Permutations

permutations Behringer, Fred 01-04 Generating Combinations

presentation Brien, Jack 90-02 Locals and more (discussion)

presentation Matthews, Keith 90-12 Stack diagrams (explored)

presentation Brien, Jack 91-02 GIST for indexing source (code)

presentation Bennett, Paul 91-06 Manual documentation (code)

presentation Charlton, Gordon 93-12 StackFlow

presentation Brien, Jack 94-10 Readable Forth

presentation Tanner, P.H. 94-12 Post indentation

presentation Charlton, Gordon 97-02 From the 'Net - StackFlow

probability Filbey, Gil 90-12 Probability of common birthdays

probability Filbey, Gil 90-12 Random thoughts on probability

probability Payne, John 90-12 Probability of common birthdays

publications Haley, Andrew 91-12 FORML 87, 88 & 89 (review)

puzzles Hainsworth, Chris 90-06 Forth brain teasers

puzzles Charlton, Gordon 90-12 Name that word

puzzles Charlton, Gordon 91-02 Puzzle answers (code)

puzzles Filbey, Gil 92-10 Tethered goat puzzle, part 1/2

puzzles Filbey, Gil 92-10 Tethered goat puzzle, part 2/2

random nos. Filbey, Gil 93-06 Visualising random numbers on Apple II

random nos. Jakeman, Chris 93-06 Random numbers

random nos. Filbey, Gil 93-08 Testing for randomness

random nos. Payne, John 93-08 More on random numbers

review Charlton, Gordon 94-10 Riding the wild 'net

review Charlton, Gordon 95-02 Report from EuroForth '94

review Bennett, Paul 97-11 EuroForth '97 Conference

review Wenham, Alan 98-01 Vierte Dimension

review Fowell, Jeremy 98-05 Forth Programmers' Handbook

review Jakeman, Chris 98-05 Genetix - The Inside Story

review Payne, John 98-07 FORML Proceedings 94 & 95

review Flynn, Chris 98-10 A Hard Day Garbage Collecting

review Jakeman, Chris 98-10 jeForth

review Bennett, Paul 98-11 euroForth '98 Conference

review Wenham, Alan 99-01 Vierte Dimension

review Anderson, Joe 99-06 Forth for Virtual Reality

review Wenham, Alan 99-11 Vierte Dimension

review Jakeman, Chris 00-01 FIG UK 20th Anniversary Reunion

review Wenham, Alan 00-01 Vierte Dimension 4/99

review de Ceballos, 00-04 21st FORML Conference

 51

Federico

review Wenham, Alan 00-04 Vierte Dimension 1/00

review Wenham, Alan 00-06 Vierte Dimension 2/00

review Jakeman, Chris 00-08 euroForth '99 Conference

review Wenham, Alan 00-11 Vierte Dimension 3/00

review Jakeman, Chris 00-11 Forth in the UK

review Wenham, Alan 01-01 Vierte Dimension 4/00

review Ives, Robert 01-01 "Forth Application Techniques"

review Oakford, Howerd 01-01 euroFORTH 2000 Conference report

review Jakeman, Chris 01-07 Gesellschaft 2001 Conference report

review Abrahams, David 01-07 "Extreme Mindstorms" book

review Bennett, Paul 01-07 3 Free Forths and an OS too!

review Wenham, Alan 01-09 Vierte Dimension 2/01

review Wenham, Alan 01-11 Vierte Dimension 3/01

review Vinerts, Henry 02-01 Across the Big Teich
review Jakeman, Chris 02-04 From the 'Net
review Oakford, Howerd 02-04 euroFORTH 2001 Conference report
review Vinerts, Henry 02-04 Across the Big Teich
review Wenham, Alan 02-04 Vierte Dimension 4/01
review Behringer, Fred 02-07 German FIG Annual Conference
review Fennema, Boris 02-07 "Write Your Own Programming Language Using C++"
review Fennema, Boris 02-07 "The Practice of Programming"
review Moore, Charles 02-07 An Interview with Chuck Moore
review Vinerts, Henry 02-07 Across the Big Teich
review Wenham, Alan 02-07 Vierte Dimension 1/02
review Vinerts, Henry 02-09 Across the Big Teich
review Rodriguez, Brad 02-09 Choosing Forth
roots Wilson, R.J. 90-08 Root of rational numbers (code)

roots Charlton, Gordon 90-10 Square root (code)

roots Trapp, John 91-02 Square-roots for double/floating point

roots Brien, Jack 97-11 From the Net - More on square roots

roots Behringer, Fred 98-03 Square roots once more

roots Behringer, Fred 98-05 Cubic roots without division

roots Jakeman, Chris 00-04 Cube Roots Again

roots Jakeman, Chris 00-04 From the 'Net - Cube Roots

roots Jakeman, Chris 00-06 From the 'Net, Cube Roots

searching Charlton, Gordon 90-12 A faster string search (code)

searching Charlton, Gordon 91-10 A binary search (code)

searching Hersom, Ed 91-12 Recursive BINSEARCH (code)

searching Charlton, Gordon 93-02 Shift-AND string search (code)

searching Charlton, Gordon 94-02 Best string search (code)

 52

searching Jakeman, Chris 95-06 Linear search

sets Charlton, Gordon 90-06 Set manipulation (code)

sorting Charlton, Gordon 90-08 Radix, an extravagant sort (code)

sorting Charlton, Gordon 90-10 Sorting strings with qsort (code)

sorting Charlton, Gordon 91-10 Heapsort (code)

stacks Preston, Philip 92-12 Stocking fillers - stacks & write-only

stacks Charlton, Gordon 94-04 Stacrobaticus exotica

stacks Filbey, Gil 94-08 Stacks (tutorial)

stacks Jakeman, Chris 95-08 Stack manipulation

stacks Joseph, Neville 95-10 Stack manipulation

stacks Barr, Stan 95-12 A third stack

stacks Hersom, Ed 97-11 Multi-precision Stack Operators

standards Jakeman, Chris 91-06 Portable code (code)

state machines Charlton, Gordon 90-10 Variables for state machines (code)

state machines Dunbar, Graeme 98-07 Finite State Machines 1/3

state machines Dunbar, Graeme 98-10 Finite State Machines 2/3

state machines Dunbar, Graeme 99-08 Finite State Machines 3a

strings Leibniz, David 91-02 String stack routine (code)

strings MacLean, Ruaridh 91-02 High level DIGIT (tutorial)

strings Charlton, Gordon 91-04 A string pattern matcher (code)

strings Payne, John 92-04 Text processing

strings Preston, Philip 92-10 TACK and BLOCKL

strings Charlton, Gordon 93-04 ANSI and portability - STRLIT (code)

strings Brien, Jack 93-06 Comment on Blockl & Tack

strings Charlton, Gordon 93-06 Similarity

strings Jakeman, Chris 95-12 From the 'net - please

strings Brien, Jack 96-07 String handling

strings Jakeman, Chris 97-02 Pattern matching - 1/3 (tutorial)

strings Jakeman, Chris 97-08 Pattern matching - 2/3 (FoSM with Forth)

strings Jakeman, Chris 97-11 Pattern matching 3/3 (Rex)

strings Borrell, Richard 98-03 Deferred Language Translation

strings Oakford, Howerd 98-11 Multiple Language Programs Made Easy

structures Brien, Jack 98-01 Building Forth Structures

systems Green, Roedy 90-08 BBL Forth (review)

systems Bennett, Paul 92-02 Pygmy Forth (review)

systems Tanner, Philip 92-04 As in a glass darkly

systems Hersom, Ed 93-02 Pocket Forth (review)

systems Tanner, P.H. 93-06 URForth (review)

systems Payne, John 95-02 A 32-bit Forth for Windows (review)

systems Stephens, Chris 95-02 Forth for the Transputer (review)

systems Behringer, Fred 97-08 Forth for the Transputer

 53

systems Worthington, Thom. 98-01 Aztec - A Forth For Windows '95

systems Besemer, Hans 98-05 4th - The Alternative Compiler

systems Jakeman, Chris 99-01 Web Forth Project

systems Lancaster, Garry 99-04 Forth for the Z88

systems Jakeman, Chris 99-06 Web Forth Project

systems Ouwerkerk, Willem 99-08 ByteForth for MCS51 cpu's

systems Tasgal, John 00-06 An Introduction to Color Forth

systems Tasgal, John 00-06 The BMP Example

systems Zimmer, Tom 01-09 4-bit Forth

systems Eckert, Brad 01-11 Tiny Open Firmware

systems Myneni, Krishna 02-04 Special Features of kForth 1/2
systems Myneni, Krishna 02-07 Special Features of kForth 2/2
tools Jakeman, Chris 90-06 Patch programming aid (code)

tools Jakeman, Chris 90-10 Run-time operators (code)

tools Preston, Philip 91-12 ALIAS ALIAS ALIAS (F83 code)

tools Jakeman, Chris 92-12 Also and -Also (code)

tools Charlton, Gordon 93-04 Wrong way round!

tools Bennett, Paul 93-06 +MOD! (LOG?) and commenting words

tools Brien, Jack 93-10 Utilities for F83 on Amstrad PCW

tools Jakeman, Chris 93-12 Shell (code)

tools Bennett, Paul 94-02 Spooling and browsing

tools Jakeman, Chris 94-02 .Call and Assert (code)

tools Jakeman, Chris 94-04 Check (code)

tools Flynn, Chris 94-06 Conditional compilation

tools Preston, Philip 94-08 More fun with EVALUATE

tools Charlton, Gordon 94-12 16-bit cyclic redundancy checksums

tools Franin, Julio 95-02 MC51 Forth debugging

tools Smith, Graham 95-06 MARK

tools Jakeman, Chris 95-08 Limit variables (code)

tools Abrahams, David 95-10 General purpose utilities for F-PC

tools Stott, Barrie 97-02 Stack checking (code)

tools Jakeman, Chris 99-06 From the 'Net - Iterative Interpretation

tools Wong, Leo 02-09 Iteration with Many:
tutorial Charlton, Gordon 92-04 Two geese and a car

tutorial Brown, Jack 92-06 An indefinite loop example

tutorial Filbey, Gil 92-12 Escape codes and printing

tutorial Filbey, Gil 93-02 A conjuring trick

tutorial Hainsworth, Chris 93-02 Shallow end

tutorial Filbey, Gil 93-04 Some old words revisited

tutorial Filbey, Gil 93-10 Floating point

tutorial Charlton, Gordon 93-12 Create .. does> ..

 54

tutorial Filbey, Gil 93-12 Postfix

tutorial Filbey, Gil 94-02 Editorial & Tu

tutorial Filbey, Gil 94-12 Floating point

tutorial Filbey, Gil 95-08 Immediacy

tutorial Filbey, Gil 95-10 Editorial

tutorial Telfer, Graham 98-07 Wondrous Numbers

tutorial Jakeman, Chris 98-11 jeForth Project

tutorial Pochin, Dave 99-01 Forth for the New Year

tutorial Pochin, Dave 99-01 Guide to Getting Started

tutorial Pochin, Dave 99-04 Getting Stuck Into Win32Forth

tutorial Pochin, Dave 99-08 Figuring it out with Win32Forth

tutorial Jakeman, Chris 99-11 Clock Challenge

tutorial Pochin, Dave 00-01 "See Win32Forth scroll the Window"

tutorial Jakeman, Chris 00-01 Clock Challenge - 2nd installment

tutorial Brien, Jack 00-04 All you need to know about STATE, IMMEDIATE and POSTPONE

tutorial Pochin, Dave 01-04 Six Easy Fonts

tutorial Noble, Julian 01-09 A Call to Assembly 1/3

tutorial Pochin, Dave 01-09 Win32Forth Fonts

tutorial Noble, Julian 01-11 A Call to Assembly 2/3

tutorial Pochin, Dave 02-01 The End of the Line
tutorial Noble, Julian 02-01 A Call to Assembly 3/3
tutorial Telfer, Graham 02-04 Seven Times Five Equals Eleven
vectoring Charlton, Gordon 90-10 Resolving forward references (code)

vectoring Jakeman, Chris 91-02 Deferred words (code)

vectoring Preston, Philip 91-04 Forgettable vectors and smart compiling

vectoring Bennett, Paul 92-10 Vectoring with DOER and MAKE

vectoring Allwright, Ray 97-11 From the Net - Defer and Is

 55

Chairman Jeremy Fowell, 11 Hitches Lane, EDGEBASTON B15 2LS
 0121 440 1809 jeremy.fowell@btinternet.com
Secretary Doug Neale, 58 Woodland Way, MORDEN SM4 4DS

 020 8542 2747 dneale@w58wmorden.demon.co.uk
Editor Chris Jakeman, 50 Grimshaw Road, PETERBOROUGH PE1 4ET

 01733 352373 cjakeman@bigfoot.com
Treasurer Neville Joseph, Marlowe House, Hale Road, WENDOVER HP22 6NE

 01296 62 3167 naj@najoseph.demon.co.uk
Webmaster Jenny Brien, Windy Hill, Drumkeen, BALLINAMALLARD,
 Co. Fermanagh BT94 2HJ

 02866 388 253 webmaster@figuk.plus.com
Librarian Graeme Dunbar Electrical Engineering, The Robert Gordon University,
 Schoolhill, ABERDEEN AB10 1FR
 01651 882207 g.r.a.dunbar@rgu.ac.uk

Membership enquiries, renewals and changes of address to Doug.
Technical enquiries and anything for publication to Chris.
Borrowing requests for books, magazines and proceedings to Graeme.

 For indexes to Forthwrite, the FIG UK Library and
 much more, see http://www.fig-uk.org

 Payment entitles you to 6 issues of Forthwrite
 magazine and our membership services for that

 period (about a year). Fees are:

National and international £12
International served by airmail £22
Corporate £36 (3 copies of each issue)

 Your membership number appears on your envelope
 label. Please quote it in correspondence to us. Look

out for the message "SUBS NOW DUE" on your sixth and last issue and please
complete the renewal form enclosed.
Overseas members can opt to pay the higher price for airmail delivery.

 Copyright of each individual article rests with its
 author. Publication implies permission for FIG UK to

reproduce the material in a variety of forms and media including through the Internet.

FIG UK Web Site

FIG UK Membership

Forthwrite Deliveries

Copyright

 56

FIG UK Services to Members

Magazine

Library

Web Site

IRC

Members

Beyond the
UK

Forthwrite is our regular magazine, which has been in publication
for over 100 issues. Most of the contributions come from our
own members and Chris Jakeman, the Editor, is always ready to
assist new authors wishing to share their experiences of the
Forth world.

Our library provides a service unmatched by any other FIG
chapter. Not only are all the major books available, but also
conference proceedings, back-issues of Forthwrite and also of
the magazine of International FIG, Forth Dimensions. The price
of a loan is simply the cost of postage out and back.

Jenny Brien maintains our web site at http://www.fig-uk.org. She
publishes details of FIG UK projects, a regularly-updated Forth
News report, indexes to the Forthwrite magazine and the library
as well as specialist contributions such as �Build Your Own
Forth� and links to other sites. Don�t forget to check out the �FIG
UK Hall of Fame�.

Software for accessing Internet Relay Chat is free and easy to
use. FIG UK members (and a few others too) get together on the
#FIG UK channel every month. Check Forthwrite for details.

The members are our greatest asset. If you have a problem,
don�t struggle in silence - someone will always be able to help.
Do consider joining one of our joint projects. Undertaken by
informal groups of members, these are very successful and an
excellent way to gain both experience and good friends.

FIG UK has links with International FIG, the German Forth-
Gesellschaft and the Dutch Forth Users Group. Some of our
members have multiple memberships and we report progress
and special events. FIG UK has attracted a core of overseas
members; please ask if you want an accelerated postal delivery
for your Forthwrite.

