
 

 
 

                                                                                                               ISS 0265-5195
 
 

 

news    events    people    reviews    projects    programming 
 

 
                     
 
 
 
 

 

 
 
 
 
 

 
 
 
 
 

April
2002 

Issue 116 

FIGUK magazine:
From the �Net

More on Flickwriter Project
euroForth 2001
FIG UK Awards
Library Report

Clock Arithmetic
Across the Big Teich

Vierte Dimension 4/2001

Special Features  
of kForth 



 

 

 
 
 

Deutsche Forth-Gesellschaft 
 

Would you like to brush up on your German and at the same 
time get first-hand information about the activities of fellow 
Forth-ers in Germany? 
 
Become a member of the German Forth Society for 80 DM 
(£28) per year (32 DM (£11) for students and retirees). Read 
about programs, projects, vendors and our annual conventions in 
the quarterly issues of Vierte Dimension. 

 
For more information, please contact the German Forth Society at the e-mail address 
SECRETARY@ADMIN.FORTH-EV.DE 
 
or visit http://www.forth-ev.de/ 
or write to  
 Forth-Gesellschaft e.V. 
 Postfach 161204 
 18025 Rostock 
 Germany 
Tel.: 0381-4007872 

http://www.forth-ev.de/


 

 

 
 
euroFORTH 2001 - The Report  17 
Across the Big Teich ................ 32 

 
Forth News ................................   2 
From the �Net ........................... 11 

 
The FIG UK Library ................... 22 
FIG UK Downloads ................... 31 
Vierte Dimensions 4/01 ............ 36 
Forth Helps Nobel Prize Winners 39 

 
Special Features of kForth ......   4 
Seven Times Five Equals Eleven  24 

 
Flickwriter Project .................... 15 

 
FIG UK Awards of 2001 ............ 20 
Letters ........................................ 40

news 

reviews 

programming 

events 

April 
2002 

Issue 116 

people 

projects 



 

 1

Editorial 
I am sad to report the recent death of Keith 
Matthews after a short illness. Keith served 
as our Treasurer for many years and was a 
great guy to work with. 

 
Welcome to new members R .Wilks from Exeter and Krishna 
Myneni from Hunstville USA � see the article on his kForth in 
this issue. 
 
Howerd�s report on November�s euroForth is very encouraging 
and I, for one, am planning a paper for euroForth 2002. 
 
As usual, we have news from Germany and from Silicon Valley. 
 
Our web site has been attracting a remarkable number of 
downloads � see article. There�s a lot more interest in Forth 
than you might imagine. 
 
Finally, congratulations to our Award Winners � see inside for 
details. 
 
PS. Don�t forget the monthly IRC session. Our next one is 
Saturday 4th May on the IRC server called �IRCNet�, channel 
#FIGUK from 9:00pm. 
 
Until next time, keep on Forthing, 
 
 

 



 

 2

 
 

Forth News      

 

Commerical Systems    

IGNITE 
PTSC is now allowing developers to 
download the fully functional IGNITE 
processor core and a complete 
development tools suite for evaluation 
and pre-production development. Ignite  

 

is a very fast stack processor based on 
the shBoom design by Chuck Moore  

 

which runs many Forth primitives 
directly. 

See http://www.ptsc.com/  

�PTSC's 32-bit IGNITE� processor 
cores outperform every rival RISC 
processor core available today�bar 
none.� 

 

 

 

 

UltraTechnology 
Jeff Fox reports that his site at 
http://www.ultratechnology.com has 
accumulated over one million hits and a 
total of 162 GB was downloaded last 
month. 

Forth Editor 
ED for Windows (ED4W) does syntax 
highlighting, colouring, etc., for Forth 
words. See http://www.getsoft.com 

Non-commercial 
Systems 

Mac OS X Forth 
Daniel Engeler has released a new 
native FORTH for Mac OS X under the 
Gnu Public Licence.  

It's a high speed, small CLI application 
featuring stack caching, seamless 
integration of assembler and built-in 
help system. The author would 
appreciate feedback. See 

http://www.ee.ethz.ch/~danengel/d/ 

Win32Forth 
John Peters has set up a mail list for 
Win32Forth. You can join the list by 
sending a BLANK email to: 

Win32Forth-subscribe@topica.com 



 

 3

and learn more about it at:    
http://www.topica.com/lists/Win32Forth 

PFE 
The latest version of PFE (32.7x) 
provides a choice between indirect 
threading and subroutine calls. This is 
only available for the i386 processor 
family so far. A total of 4 threading 
models are supported, reducing the time 
for the  reported benchmark to 55% of 
the time for indirect threading. 

Forth Resources 

ANS Technical Committee 
After 5 years, ANSI requires the 
Technical Committee to revise the 
published standard. E.Rather reports 
that �It became clear that the members 
didn't have enough time to do the 
extensive work necessary to complete a 
revision and take it through the 
necessary public reviews, so we ratified 
Forth94, and it will be due for re-
evaluation in 2005. 

However, a new TC will have to be 
organized and qualified. ANSI raised 
the annual dues from $200 to $800 
(without notice) and most members of 
the TC resigned in protest, so the TC 
was officially disbanded for having too 
few members.� 

String Packages 
Two references provided on 
comp.lang.forth are: 

String-manipulating library from SP-
Forth (spf.sourceforge.net) is available 
from CVS or here: 

http://cvs.sourceforge.net/cgi-
bin/viewcvs.cgi/spf/devel/~ac/lib/STR2.F  

The basic string words in kForth can be 
found at: ftp://ccreweb.org/software/ 
kforth/examples/strings.4th 

 

 
 



 

 4

krishnamyneni@compuserve.com 

Special Features of  kForth 
Krishna Myneni and David P. Wallace 

 
kForth was originally written, as many Forth�s are, to provide user-
programming facilities within another application. However kForth 

includes two unusual features which are reported in this 2-part 
paper, which was prepared for JFAR, the Journal of Forth 

Applications and Research. 
Krishna Myeni is a member of FIG UK living in the USA. 

 
 
We discuss two special and non-standard features of the kForth interpreter, a 
program based largely1 on ANS Forth. Firstly we demonstrate how a limited form 
of data typing and type checking can catch a significant set of Forth 
programming errors, with almost no modification to standard Forth code. 
Secondly, we discuss the benefits and restrictions imposed by using a 
dynamically growable dictionary. The two new features of our Forth system 
require the addition of two new words: A@ and ?ALLOT. 

Introduction 
kForth2 is a compact interpreter, largely based on ANS Forth3. However, several 
new features, which are not a part of the ANS standard, have been introduced in 
kForth. In this paper we discuss two of these non-standard features: 
 
! Data typing and type checking 
! Dynamic dictionary 

 
A third non-standard feature, called deferred execution, will not be discussed 
here since it does not affect the structure of Forth code. We give the motivation 
for including these features in kForth, particularly as it relates to our original 
goal of writing an interpreter to be embedded into other applications. A parallel 

                                                      
1 It lacks the standard HERE C, and , in order to support a dynamic data space, as 
explained in the next issue. 
 
2 K. Myneni, kForth User�s Guide, (http://ccreweb.org, 2001). kForth and XYPLOT are 
released under the GNU General Public License. Source code, executables, and 
documentation for both of these programs may be obtained from http://ccreweb.org. 
Over 40 sample programs are available for download. kForth runs on x86 compatible 
processors operating under Linux or the various Win32 systems (Windows 
95/98/NT/2000). 
 
3 ANSI X3.215 -1994, American National Standards for Information Systems -  
Programming Languages - Forth, (American National Standards Institute, New York, 
NY 1994). 



 

 5

goal was to allow code written for kForth to be easily ported to other ANS Forth 
systems � kForth may be viewed as a subset of ANS Forth. The two new words, 
A@ and ?ALLOT, introduced in kForth for supporting the new features described 
in this paper, have simple ANS Forth-compatible definitions. We describe how 
the two new features are implemented and illustrate their use with examples. 

Brief History of kForth 
kForth4 has its origin as an embedded 
interpreter for the application XYPLOT, a 
plotting and data manipulation utility. 
One useful feature of XYPLOT is its 
expression evaluator, which parses 
simple algebraic expressions and applies 
the operations to an entire data set. For 
example, the expression  y*2  multiplies 
all of the y values of an (x,y) data set by 
2.  
 
In its early stages of development, the 
expression evaluator consisted of a 
parser which broke down the expression 
into a vector of �op-codes�, and an 
execution loop which performed the 
sequence of operations. A data stack 
held the intermediate values of the 
calculation. Thus, the beginnings of a 
stack based interpreter was written and 
incorporated into XYPLOT. Subsequently 
the expression evaluator was developed 
into a fully-featured interpreter that 
allowed the main application to be 
extended with  modules written in Forth source code. 
 
In addition to its use as an embedded interpreter, kForth also functions as a 
standalone Forth computing environment. At present, kForth features a 
vocabulary of over 240 words, with 116 core words, 26 core extension words, 
and more than 60 words from the option sets for ANS Forth. 

Data Typing and Type Checking 
The rationale for data typing in kForth is to provide error checking. Unlike the 
statically-typed Forth system, strongForth5, which defines a hierarchy of data 

                                                      
4 Not to be confused with the earlier kForth by Guy Kelly, basis of the VPPlanner 
spreadsheet. 
5 S. Becher, Introduction to strongForth, (http://home.t-online.de/home/s.becher/forth/, 
2000). 

Forth was chosen as the language for the 
interpreter rather than developing a custom 
application language for several reasons: 
 
! It is relatively easy to interpret 

stack-based code. 
! One of the authors had several 

years of experience with Forth 
programming. 

! Forth provides a wide range of 
functionality, from low level bitwise 
operations to high level floating 
point operations. 

! Forth provides a foundation for 
constructing an application-specific 
language. 

! The use of an established language 
such as Forth reduces the need to 
write extensive documentation, 
which would be required for any 
custom language. 



 

 6

types, the implementation of kForth is limited to just two data types: ADDR for 
addresses and IVAL for all other data. Words listed in Table 1 verify that the 
address operand on the data stack (or return stack) has the proper type, i.e. type 
ADDR, to avoid processor exceptions caused by an invalid memory access. 
Although a signal handler might be used to catch such exceptions, if the 
interpreter is to be embedded into another application, this method would 
preclude the main application from having its own handler for such exceptions.  
 
It is important to note that type checking in kForth is performed at run-time by 
associating data types with elements on the stack. This form of type checking is 
known as dynamic type checking6. Compilers for traditional languages such as C 
perform type checking at compile-time, a method known as static type checking. 
 
Although implementation of static type 
checking in Forth has been discussed 
previously7, it requires augmentation of 
the language itself to provide a means of 
specifying argument types to a word - 
the strongForth language provides a 
clever way to do this using the common 
stack diagram comment. In kForth, 
however, our motivation is not to 
implement strict data typing, but to use 
data typing to catch typical run-time 
errors, with virtually no modifications to 
the Forth language. 
 
Two kinds of errors are likely to be caught by our limited method of type 
checking: 
 
! The number of parameters on the data stack or the return stack is 

incorrect and one of the parameters is an address. 
! Parameters on the data stack or the return stack are in the wrong order 

and one of the parameters is an address. 
 
These are typical conditions created by problem code in Forth. Take the 
following simple example of code with incorrect ordering: 
 

variable v 
v 3 !   \ should be  3 v ! 

 
The following error message is displayed: 
 
                                                      
6 A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and Tools 
(Addison-Wesley, Reading, MA, 1988). 
 
7 B. Stoddart and P. J. Knaggs, Type Inference in Stack Based Languages, (Formal 
Aspects of Computing, 3: 1-000, 1992). 

C@ C! W@ W! @ ! 
A@ 2@ 2! SF@ SF! DF@ 
DF! +! FILL ERASE COUNT TYPE 
CMOVE CMOVE> LOOP +LOOP FIND ' 
ACCEPT OPEN READ WRITE NUMBER? 
SYSTEM 
CHDIR 

Table 1: Words which perform 
address type checking in kForth 

 



 

 7

VM Error(1): Not data type ADDR 
 
An operand of type ADDR was expected on top of the stack by ! and not found. 
The kForth virtual machine (VM) quitted execution and returned an error code 
(the error message is actually displayed by the outer interpreter). The state of 
the stack at the time of the error may be examined by .S to diagnose the 
problem, since the VM performs QUIT rather than ABORT. 
Corruption of the return stack can also be detected by run-time type checking. 
For example, a common problem is to push an item onto the return stack and 
forget to pop the item before the word returns. An extreme example is: 
 

: BAD 3 >r ; 
 
Execution of BAD results in  
 

VM Error(5): Return stack corrupt. 
 

The error is detected by checking the data type of the item on top of the return 
stack upon return from BAD. Since it does not have type ADDR, for a valid return 
address, the VM returns an error indicating corruption of the return stack. The 
VM executes ABORT when the return stack is found to be corrupt. 
 
Now consider a more subtle coding error involving the return stack: 
 

: bswap ( n1 n2 n3 n4 -- n2 n1 n3 n4 ) 
2r> swap 2>r ;   \ should be  2>r swap 2r> 
1 2 3 4 bswap 

 
Entering the above statements into three untyped Forth systems produced 
different results. One system displayed an error while the other two responded 
with ok. With the latter, examination of the stack showed that the arguments 
were unchanged. It should be noted that all of the systems we tried displayed 
an error if the word bswap was used inside of another word. A variant of the 
above example was also tested: 
 

: test 10 0 do i . 2r> swap 2>r loop ; 
1 2 3 4 test 

 
It is interesting to observe the number of loop iterations executed by the various 
untyped Forth systems. At least one went into an infinite loop. Worse, the other 
systems executed this code without complaint, returning with ok - the only 
indication of a problem being the values printed by  i . the diagnostic print of 
the loop index. 
 
kForth detects problems with both of these code examples using type checking of 
the return stack. Upon every iteration, the words LOOP and +LOOP test for the 
presence of a branch address on the return stack via type checking. The price of 
detecting these kinds of problems is the added overhead for maintaining type 



 

 8

information and performing type checking. We measured the impact of type 
checking in kForth on execution performance and found that it caused about a 
15% increase in the time to execute standard benchmarks8. 
By design, kForth implements data typing so that it is almost entirely transparent 
to the user or programmer. Every cell in the data stack has associated with it one 
of two types: IVAL or ADDR. Data types are stored in a separate Type Stack, 
shown in Figure 1, which is manipulated in parallel with the data stack. kForth 
does not provide words for direct manipulation of the Type Stack. Instead, 
intrinsic words which operate on the data stack perform corresponding 
operations on the Type Stack. Consider the behavior of ROT: 
 

( n1 n2 n3 -- n2 n3 n1 ) 
 
If n1 is of type ADDR, and n2 and n3 are of type IVAL, as shown here in Figure 
1, ROT also rotates the type stack so that the top element has type ADDR after 
the operation. Other words which affect the data stack also manipulate the type 
 

 
stack in an analogous manner. The behavior of two particular words, with 
respect to data typing, should be noted: + and - . Consider the case where an 
offset must be added to an address using + : 
 

( a1 n -- a2 ) or ( n a1 -- a2 ) 
 
We expect that the result of + should produce an address if either the first 
operand or the second operand is an address, and indeed this is the typing rule 
observed by + in kForth. The behavior of - is different: 
 

( a1 n -- a2 ) and ( n1 a -- n2 ) 
 

                                                      
8 A. Ertl, Performance of Forth Systems, 
http://www.complang.tuwien.ac.at/forth/performance.html, 1996). Standard benchmark 
programs used are: bubble-sort, matrix-mult, fib, and sieve. 

-1 

25 

134765028 

IVal

IVal

Addr

134772320 

2147483647 IVal 

Addr 

          Data stack              Type stack                   Return stack        Return type stack 
      Figure 1: The kForth Stacks 
      The stack pointers are always aligned for each pair of stacks. 



 

 9

We may subtract an offset from address a1 to obtain address a2; however, it is 
not sensible to expect that by subtracting address a1 from integer n1, we will 
obtain a valid memory address. Therefore the data type of the result depends on 
the ordering of the data types of the operands for - .  
 
But the programmer need not be aware of these typing rules � for these cases, 
sensible Forth code produces sensible data typing, enabling subsequent error 
checking. The typing rules for + and - are implemented in an efficient manner 
and require little computing overhead in the virtual machine. 
 
The return stack has an associated type stack, called the Return Type Stack, also 
shown in Figure 1. In transfers from the data stack to the return stack and vice-
versa the data types are also transferred between the Type Stack and the Return 
Type Stack. As with the Type Stack, direct 
manipulation of the Return Type Stack is not 
permitted. Intrinsic words that modify the return 
stack also modify the Return Type Stack.  
 
In addition to the VM itself, words which explicitly 
perform type checking using the Return Type Stack 
are LOOP and +LOOP. The loop index words, I and 
J, place an item on the data stack with the same 
type as the starting loop index. It is therefore possible to loop over an address 
range and use an index word to place an item of type ADDR on the stack. The 
following example illustrates this point: 

create tb1 20 allot 
: byte_sum ( -- n | compute the sum of bytes in table tb1 ) 

0 tb1 20 + tb1 do i c@ + loop ; 
 
Use of C@ on the index value returned by I is valid since the starting index has 
type ADDR. The above code is no different from that used in an untyped system, 
once again demonstrating the transparency of data typing in kForth. 
 
Next, we discuss the only known instance in which the programmer must be 
aware of data typing in kForth: fetching address values from memory onto the 
stack. An address is fetched from memory using A@ instead of @ . The word A@ 
retrieves the same value as @ , but it also sets the data type of the stack cell 
containing the value to type ADDR. In contrast, @ sets the data type to IVAL. The 
following example illustrates the use of A@ : 
 

variable current_table 
create tb1 20 cells allot 
tb1 current_table ! 
: @n ( n -- m | fetch the n^th element of the current table ) 

cells current_table a@ + @ ; 
 
The variable current table holds the address of a table, set to tb1 in the 
example. The address of the table is fetched onto the stack by current table a@ 

>R R> R@ 2>R 2R> 2R@
DO ?DO LOOP +LOOP 
UNLOOP I J  
QUIT EXECUTE EXIT 

Table 2: Words which use 
the Return Type Stack 



 

 10

rather than by current table @ , as in an untyped Forth system. Notice that ! is 
used to store an address value to a memory location. Data has associated type 
information only while it resides on one of the two stacks (the data stack or the 
return stack). Type information is not retained for data stored at other memory 
locations. The need to provide a new word, A@ , in the basic Forth dictionary 
may seem undesirable; however, it is a relatively small price to pay for the 
benefits of address type checking, which have been illustrated above. Use of A@ 
also makes clear to the reader of the code that an address is being fetched rather 
than an other kind of data value. This section concludes with the following 
point: 
 
Porting kForth code to an untyped Forth system requires that A@ be defined to 
be synonymous with @. 
 
 
The second half of this article discusses a dynamic version of ALLOT and will 
appear in the next issue of Forthwrite - Ed. 
 
 
 
 
Krishna Myneni is a physicist and self-taught programmer who delights in devising 
new experiments, piecing them together out of odds and ends, and orchestrating 
the pieces with software. He is a long-time Forth user and proponent, much to the 
amusement of his colleagues. 
 
 
 



 

 11

From the �Net 
 

Here are some items from the newsgroup comp.lang.forth which are worth 
repeating. 

 
 
Mike Losh, who collaborated on the FIG UK WebForth project, gave his view on 
comp.lang.forth recently of possible opportunities for Forth on the web 
 
Due to changes with @Home, my personal webpage now resides at: 
http://mywebpages.comcast.net/mlosh/ 
 
I have only done minor updates for my new email and so on.  This site 
contains my original eForth for Java and a GPL version of WebForth 
where the FIG UK members contributed a significant amount of code.  
There is also an HTML copy of my Forth Dimensions article about the 
jeForth applet for anyone who wants to more background info about it. 
 
Please remember that this project started when Java and the Web were 
still relatively young (primarily '96 to '98, IIRC).  A Forth in a Java applet 
perhaps has some value as a demonstration/education platform for learning 
about Forth, but any serious student of Forth is better served with either 
a native implementation for his or her hardware platform or by an OS-
hosted Forth that exploits the operating system services.  The Java applet 
approach that I started and others extended is still too limiting for really 
practical & useful applications. 
 
If I were to design a Forth today for specifically implementing Web 
Services (the information technology du jour), I would use a totally 
different approach. For example, on Unix/Linux, I could imagine a daemon 
process (written in a native Forth or perhaps C) that listens to a TCP/IP 
port and executes a modified outer interpreter that understands some of 
the web service protocols (SOAP, RPC-XML) instead of a teletype-style UI.  
Through that process, remote users (human or other apps) could invoke 
Forth words to do whatever that system could do.  Perhaps dynamically 
create new Forth words, which then automatically become new web 
services.  Of course there would be significant security and authentication 
challenges compared to the traditional Forth outer interpreter. 
 
Compared to my earlier efforts, such a "soapForth" or ".NetForth" might 
be really useful to dynamically build and tear down temporary web services 



 

 12

in flexible real-world applications.  It could carve out a niche among all the 
other .Net and other SOAP languages and products.  But I am not working 
on such a thing.  I think this entire web services concept needs a few more 
spins before it starts to generate more benefits than hype. 
 
 
Forth has been memorably described as the quickest way to explore new 
hardware because of its support for interactive use. Ironically, the same reason is 
given below to explain the success of Forth in identifying and working round 
bugs in  Windows. 
 
John Dunn wrote 
Is anyone doing Windows applications in Forth anymore?  Not embedded  
system work or CE work, but real, user interface intensive Windows apps? 
If so, which Forth? 
 
Both Forth, Inc. SwiftForth and MPE FVX look impressive, but the 
Windows interface is still daunting and not at all like the elegant simplicity 
that is Forth itself.  iForth looks good too, especially the price and open 
licence.  But as far as I can tell, there is no Windows GUI interface at all. 
 
As a long time Forth programmer, who turned to the dark side some 3 
years ago, to Visual Basic, and now (mostly because VB is about to become 
an orphan) taking another look at Forth for Windows...I would really 
appreciate any insight anyone here who is actually using Forth in a Windows 
app can share. 
 
Glenn Dixon responded: 
My son Tom and I have done several small Windows apps (with GUI), one 
medium one, and one huge one that includes fancy features--hardware 
cards with DSPs, web-deployed control and status screens, distributed 
web and and LAN EXEs, database, low-level sound card and Winsock 
interfaces, etc. One GUI includes drag-and-drop icon-based flowchart 
programming. 
 
We use Swiftforth and have been very satisfied with it. At one point we 
seriously tried to move the app to Visual Basic, and again to Delphi, but 
found that after you dip below the visual interface the underlying 
environment was more difficult to work with than Forth. 
 
This is because when you do a sophisticated Windows app, you spend most 
of your  time programming, not in the language you chose, but in the 



 

 13

language of the Windows API.  It is a world of incomplete and incorrect 
documentation, bugs in API calls, poor migration from version to version, 
and a dozen different interfaces.  Forth gives you a window (pun?) into this 
world and allows you to play with API calls like no other language. We spent 
A LOT of time doing this. 
 
 
Jeff Fox responded to an inquiry about �stack machine� processors. I wonder 
how many readers realise that Chuck�s chips are asynchronous (ie unclocked). 
This is an approach which has promised a great deal but proved impractical for 
larger processors. 
 
> Has anyone ever tried an unclocked (asynchronous) stack machine design. 
> I can see major advantages in this especially if call and data stack 
> operations can be overlapped. 
 
The Novix had three hardware busses, main memory, parameter stack, and 
return stack. This allowed it to execute operations on all three busses in 
the same clock cycle. But the chip used an external clock so the CPU and 
memory access was not asynchronous.  
 
Every chip that Chuck Moore has designed since 1990 has been 
asynchronous.  The real-time I/O coprocessors (if any) are externally 
clocked, the CPU have all been asynchronous and free running. 
 
His latest designs have used dynamic logic in addition to being 
asynchronous.  This lets them run faster, but it also means that if you put 
something on the stack and wait a while that it will go away. ;-) 
 
Chuck uses a lot of hardware tricks.  Some of his library components 
have fewer gates than the ones other people use.  He simply leaves out a 
number of components that other people need.  He has an unusual 
complementary bit pattern on the bus.  He does not use stack pointers (or 
has not, he could if someone needed it). His designs run every instruction 
on every clock cycle. He has regular horizontal and vertical structures 
(very powerful design feature). Every transistor is individually tuned. And 
his design tools assist in this by having correct thermal modeling, smart 
layout assistance, extensive simulation with full analogue and thermal 
modelling of every junction on the chip, design run checks, simulation 
scripting, and is fast and efficient enough to run the CAD software on a 
small computer. 



 

 14

 
 
 

provides everything needed in a 
professional-quality low-cost Forth 
controller board. 

Use it in industrial or hobby 
projects to control a wide range of 
devices using the well-known multi-
tasking Pygmy Forth. 

 
Designed for hosting from a Windows 
or DOS PC, you can test your 
application as it runs on the F11-UK 
board itself. The board was developed 
by FIG UK members to provide an easy 
way to explore the world of  controlled 
devices � a niche where Forth excels. 

 
The kit includes both hardware and 
software and is supported and sold to 
members at a nominal profit through a 
private company.  
 
Software 
 
PC-based PygmyHC11 Forth compiler 
running under DOS produces code for  
Motorola HC11 micro-controller.  
 
Code is downloaded via standard serial 
link from the PC to the FLASH memory (or 
RAM) on the F11-UK single board computer 
(SBC).  
 
No dongle or programming adaptor of any 
kind is required.  
 
Forth running on the SBC is interactive 
which makes debugging and testing much 
easier. 
 
Multitasking and Assembly included. 
 
The serial link can be disconnected to 
enable the SBC to function as a stand-alone 
unit. 
 

All source code provided - 78 pages 
or so (unlike many commercial 
systems).  
 
Around 30 pages of additional 
documentation is supplied including a 
full glossary of the 300 or so Forth 
words in the system. 
 
Email mailing list for discussion and 
limited support. 
 
Hardware: 

 
Processor:  
      Motorola HC11 version E1 - 8 MHz  (2  
      MHz E-Clock). 
Memory:  
      32k x 8 FLASH 
      32k x 8 battery backed SRAM 
      512 x 8 EEPROM onboard HC11. 
I/O: 
      20 lines plus 2 interrupts (IRQ & XIRQ). 
Analogue in: 
      up to 8 lines using onboard 8-bit A/D. 
Serial: 
      1. RS232, UART onboard HC11 

    2. Motorola SPI bus onboard HC11. 
Expansion: 
      Via HC11 SPI serial bus using 
       2 or more of 20 available lines. 
Timer system: 
      Inputs: 3 x 16-bit capture channels 
      Outputs:   4 x 16-bit compare channels. 
PCB size: 103 x 100 mm. 

 
 
Price to FIG UK members: £47.0 plus postage and packing (£2 UK, £4 overseas) plus 

$25.0 (US Dollars) for registration of 80x86 Pygmy Forth with 
the author Frank Sergeant. 

 
                             Delivery: ex-stock. 
              More information: jeremy.fowell@btinternet.com  and  0121 440 1809 

F11-UK



 

 15

Flickwriter Project 
Jenny Brien 

This is a team project. Although based around the F11UK processor 
board, you don�t need access to a board to make a valuable 

contribution. There is plenty of opportunity for Forth programming - 
just contact Jenny. 

 
It's been a while since I wrote 
anything on this, but it seems some 
people are still interested, so here's 
the story so far. 
 
I do some voluntary work with 
handicapped people (some with 
Cerebral Palsy - some with hand 
deformities) and noticed how 
difficult it was for them to use 
standard keyboards and mice.  A 
number of current alternatives were 
also either unsuitable or too 
expensive. 
 
I'm looking for an input system that 
could, with practice, match 
handwriting speed, but would work 
under the most adverse conditions. 
Think of doing it in the dark, whilst 
being driven over a bumpy road, 
using one hand and wearing a 
boxing glove. It struck me that a 
solution to this problem might also 
have uses in other areas, for example 
in wearable computers. 
 
The 8-way �pizza key� idea is based 
on the Quikwriting system for palm 
computers (see http://www.mrl.nyu.edu/ 
~perlin/demos/quikwriting.html). Later I 
discovered that the Medical 
Engineering Resource Unit had the 
same idea. It seems they have 
implemented it as a Windows mouse 
driver, using a PIC to convert 
joystick output to a PS2 mouse 
cable. See in particular 
http://www.meru.org.uk/ 

casestudies/mary.html. I haven't yet 
seen this software in action. 
 
For the present we're concentrating 
on a hardware keyboard substitute, 
sending the necessary key codes 
down a standard keyboard cable. 
 
There are mouse-substitution and 
short-cut key programs available, 
which Chris is investigating, to run 
on the PC itself. There's still a lot of 
scope for experiment, though. The 
joystick gives the equivalent of a 32-
key pad (64 if we count the less 
likely out-and-back combinations) 
That's not bad, but it still gives a lot 
of shifting to reproduce all the 
combinations possible on a standard 
keyboard. 
 
The basic design principle is to only 
move/hold one thing at a time. 
Given that restriction, it should be 
easy to produce an input device to 
use the same interface for someone 
with different disabilities.  I think 
with this restirction it is possible to 
do both keyboard and mouse 
substitution with only one extra 
switch which when you turn on 
when you want to point to 
something, and off when you have 
pointed to it.  The next gesture on 
the joystick tells what you want to 
do with your selection - click, 
double-click, drag, shift-control-drag 
or whatever. It should be possible to 
speed input by allowing shifts to 



 

 16

occur in parallel with input, which 
suggests the use of two pizza keys. 
 
I wonder about the hardware that 
controls several PCs with one 
keyboard, mouse and monitor. What 
system does that use? Does there 

have to be a software driver running 
on each PC?  I just have this vision 
of being able to control any 
computer on a network from 
something no bigger than a Palm, 
which carries all my personal data, 
prompts and interface preferences.

 
 
 
 
 

 
 

Forth on a Phone 

I note from comp.lang.forth that Chris Double 
(chris@double.co.nz) is �using Forth on a Nokia 9210 
cellphone under the Symbian OS�. 
 
Is anyone else programming Forth on a phone? 



 

 17

 

euroFORTH 2001 � The Report 
Howerd Oakford 

 
The November conference extended beyond Europe bringing in 
visitors from USA including Chuck Moore, inventor of Forth. We are 
indebted to Howerd who not only presented an interesting paper, but 
also provided us with this detailed report. 
 
I counted no less than 5 papers by FIG UK members among the 
presentations. All these papers are downloadable from 
http://dec.bournemouth.ac.uk/forth/euro/ef01.html and are also available in 
printed form from our Library. 
 
 

This was my second EuroForth at Schloss Dagstuhl. "Schloss" is usually 
translated as "castle", which for many English people conjures up images of a 
grassy hill with the remains of a few stone walls just visible at the top. A better 
translation would be "palace", with marble floors, chandeliers, and antiques 
beyond the dreams of avarice. There is the music room (with grand piano, cello 
and violin), the "haunted" meeting room 
(a lady in white appears at midnight, 
allegedly - I think I have just started this 
rumour!) complete with a very large 
chiming clock, and the "comfy sofa" 
lounge - scene of many late night 
discussions. 
 
But that is only a part of Palace Dagstuhl - there is also the new section, 
consisting of the simple, but complete, accommodation (each room has an 
Ethernet port, phone and alarm clock), the computer room, library and meeting 
rooms.  
 
There are two more ingredients that make any conference at Palace Dagstuhl 
special : the food and the "culture". The food is excellent - a never-ending supply 
of coffee and cakes, and delicious meals.  The "culture" is difficult to define, and 
exists because of a number of simple things. Once you are inside Palace Dagstuhl 
there are no locks (the main entrance doors have electronic PIN keypads). There 
are supplies of drinks and snacks, which you pay for at the end of your stay by 
ticking off boxes on a piece of paper. There is a selection of mountain bikes 
which you are free to use to climb the cliff overlooking the site (which has the 
required ruins on the top of a grassy hill). And a communal sauna... 
 

http://dec.bournemouth.ac.uk/forth/euro/ef01.html


 

 18

The overall effect is a feeling of being "at home", relaxed, and looked after, in a 
way that allows you to concentrate completely on the conference itself. 
 

A Web-Server in Forth No modern computer language is 
complete without support for the Web, and this paper shows 
how Forth can process HTTP requests, and become a Web 
Server. Like most of the high level Web protocols, HTTP uses 
ASCII text terminated by a CR, and therefore requires many 
string processing words. We all know that you can do anything 
in Forth, but its nice to prove it! 
 

 
Forth versus the Beast The interface between software and 
hardware is rarely more fragile than at power-up, power-down 
and reset. Watchdogs live in this twighlight zone, where 
software must run on hardware that is not quite ready for it, 
and hardware must make sure that it doesn't. When this 
nightmare world goes wrong, Forth can provide a guiding 
light...  

 
 
A Windows driver program written in Forth Few real-
time programmers can mention this ubiquitous OS without 
spitting, so it is good to see its foundations being chipped away, 
especially now NT and 2000 are beginning to make life difficult 
for those of us who like hardware. 

 
 
CANed Objects Extensions to the Forth compiler allow sensors 
to reveal their innermost secrets - and the dream of auto-
configured sensors comes a step closer to  reality. 
 

 
 
The c18 colorForth Compiler A cross compiler in 3 blocks, 
for a chip that ( theoretically ) runs 2400 MIPS at 20mW. 
Unique. 

 
 

Threaded Code Variations and Optimizations A 
thorough comparison of several different threading schemes, 
complete with real execution speeds and code sizes. A lot of 
work has been done here! 

 
 
 
 
 
 

Nick Nelson 

Alan M 
Robertson 

M. Anton Ertl 

Chuck Moore 

Bernd Paysan 

Malcom 
Bugler 



 

 19

 
The Common Case in Forth Programs Another 
comprehensive study of Forth "under the hood", this time 
analysing just how often words are called in real Forth 
programs. 

 
 
 

Using Communicating State Machines to Design an 
Interrupt Driven Task Scheduler This one really got us all 
thinking. Formal Methods in computer science which can 
actually be understood by programmers! Perhaps now we can 
all prove that Forth is good! 

 
 

 
Treating Data as Source An XML parser illustrates simple 
techniques to extend Forth�s standard tools for handling source 
to handling data (see September issue of Forthwrite). 

 
 
 

OO Package for embedded control A proposal for a 
standard ObjectOriented extension wordset, suitable for 
embedded systems. Some clever design decisions provide the 
abstraction of OO by using the flexibility of Forth. 

 
 

 
Joy: Forth's Functional Cousin I am seeing a pattern here : 
take any field of modern computer science, express it in Forth, 
and suddenly mere mortals can understand it. In this case the 
Joy of Functional Programming ( pun intended ) is exposed to 
the common people. 
 
 
 

 
 
colorForth and the Art of the Impossible My first 
impressions of colorForth. Chuck's latest Forth has a very steep 
"unlearning curve" - it is not an "operating system", it does not 
have layers, it does not use ASCII. The list of features which are 
conspicuous by their absence is quite long. If you want to make 
money out of computer programming, jump on the current 
bandwagon and exploit its complexity. If you want to 
understand computer programming, look at Chuck's code and 
try to grasp its awesome simplicity. 
 

David Gregg, 
M. Anton Ertl, 
John Waldron 

Bill Stoddart 

Jenny Brien 

Daniel 
Ciesinger 

Manfred von 
Thun, 

presented by 
Reuben 
Thomas 

Howerd 
Oakford 



 

 20

 
25x Emulator An emulator in under 3 blocks for a chip that 
(theoretically) runs 60,000 MIPS at 500mW. Neat. 

 
 

The Mite VM: bridging the complexity gulf A  new virtual 
machine, an attempt to "bridge the cultural divide" between the 
complexity of Java, and the minimalism of machineForth. Gives the 
"Forth bridge" a whole new meaning! 

 
 

 
A Minimal Development Environment for the AVR 
processor An 8 bit virtual machine, a suite of compilers and a 
Windows interface all add up to a simple, reliable system for teaching 
programming. I am optimistic that a whole new generation of 
programmers will be produced who react in horror to the complexity 
of conventional environments . . . 

 
 
An Open Source VHDL "micro core" Hardware defined by 
software. Design your own Forth processor - choose the data and 
instruction width, then choose your FPGA chip... Awesome. 

 
 

I could not finish this report without a brief mention of the workshops: 

 
which were a rare opportunity to discuss these and other more diverse topics in 
more detail with some very smart people! 
 
I would like to thank Chuck Moore for his two presentations at the conference, 
the time he spent explaining the design of colorForth and OKAD II, and of course 
for discovering and developing Forth in the first place...  
 
Thanks are also due to Nicole Probst and Angelika Mueller at Schloss Dagstuhl, 
all of the presenters and participants, and of course to Bill Stoddart and Peter 
Knaggs for organising the event and editing the papers.  Well done! 
 
Another great euroFORTH. See you next time!  

Chuck Moore 

Klaus 
Schleisiek 

Federico de 
Ceballos 

Reuben 
Thomas 

euroFORTH 2002 is in September, provisonally booked at the 
Vienna University of Technology. For announcements, join the 

mailing list at euroforth-subscribe@yahoogroups.com. 

! Open Firmware 
! Object Oriented Forth 
! Security and Encryption 

! Abstraction 
! Internet Protocols 
! Forth Hardware 

mailto:euroforth-subscribe@yahoogroups.com


 

 21

Presenting The FIG UK 
Awards of  2001 

 
These awards are given to encourage effort and 

recognise achievement. The FIG UK Awards of 2000 were 
won by Keith Matthews and John Tasgal.  

 
 
 
 
To everyone who sent in their nominations - 
"thank you". Looking back, a lot of good work was 
done during 2001 and our judges, the officers of 
FIG UK, have now chosen two winners. They each 
receive: 
 
! a place in our web site�s Hall of Fame 
! this mention in Forthwrite 
! a year's free membership. 

 
 
Chris Hainsworth: for 20 years of enthusiastic 
support for FIG UK, most recently as chairman. 
 
 
 
Dave Pochin: for his many (11 so far) articles 
most recently on using Windows from 
Win32Forth. 
 
 
 

We congratulate Chris and Dave on winning 
- enjoy your year of free membership! 

 

Free 
membership 

Achievement 

Forthwrite 



 

 22

The FIG-UK Library 
Graeme Dunbar 

 
The Group's Library now has a new 
home in the Archive Room of the 
School of Engineering at the Robert 
Gordon University in Aberdeen. On 
behalf of all members of the group I 
give our thanks to Sylvia Hainsworth 
as our out-going Librarian, for many 
years of excellent support and 
service and to Doug Neale for the 
not inconsiderable task of packing 
the library up and sending it on to 
me. 
 
Your new Librarian has been a 
member of FIG-UK since 1984 when 
a colleague introduced me to the 
group. I am a lecturer in Electrical 
Engineering and through my work 
on the School library advisory panel 
I hope to be able to call upon my 
colleagues in the University library 
to keep me right and give advice. 
 
I expect that very few people have 
actually seen the library on its 
shelves. Five boxes of books sounded 
like an enormous amount, but on 
the shelves it looks quite modest. 
Nonetheless we have a good range 
of books, journals and conference 
proceedings. Most of the books 
would probably suit Forth novices as 
many of our more experienced 
members will already have a 
selection of them on their own 
shelves. The catalogue is really a 
history of Forth publishing and sadly 
new books are being added to it only 

infrequently. It would not be 
boasting to say that we will try to 
keep a copy of every new book on 
Forth published. 
 
The latest additions to the library are 
replacement copies of "Forth 
Application Techniques" by Elizabeth 
Rather and "Forth Programmers 
Handbook" by Edward Conklin and 
E. Rather direct from Forth Inc.. 
Forth Inc. also offers a free trial 
version of Swift Forth to use with 
the books. 
 
Over the years some of our copies 
have gone missing and as they are 
now out of print cannot be replaced 
unless we can find second-hand 
copies or donations from other 
members.  They include some of the 
more specialist and advanced books 
that were never printed in large 
numbers. There has not been time to 
do a full check so I will be publishing 
pleas for donations in a future issue. 
 
The situation regarding journals and 
conference proceeding is much 
brighter. We have a complete run of 
Forthwrite, with any missing issues 
having been made up from Doug 
Neale's stock of spares and my own 
copies.  
 
The procedure for borrowing is 
simply to send me your request, 
giving your membership number. To 



 

 23

give all members a fair chance of 
getting hold of material of interest to 
them there will be a limit of two 
books out on loan to any borrower 
at a time. The normal loan period 
will be three months unless another 
member makes a request. When you 
return the book or books please 
enclose stamps to the value on the 
package when you received it. This 
keeps money transactions to a 
minimum. Apart from the purchase 
of new books, the library should be 

largely self-funding if this scheme 
runs smoothly.  
 
It would be very helpful if borrowers 
could spare the time to write a short 
review. This would be especially 
useful for new or uncommon books, 
but for the old standards even just a 
few lines and comments could well 
be of benefit to other potential 
readers. Depending on the book and 
the review this could be an article 
for Forthwrite or perhaps posted on 
our web page.

 

The tutorial �Forth Application Techniques� from Forth Inc. went 
missing soon after Robert Ives� review last year (see Jan 2001) 
but Graeme has since bought a replacement copy. As well as 
providing excellent hands-on material for basic concepts, it also 
includes advanced topics like word-lists and multi-tasking. 



 

 24

gtelfer@po.synapse.ne.jp 

Seven Times Five Equals Eleven 
Graham Telfer 

Graham describes his development process for a set of routines 
which explore modular arithmetic. 

Introduction 
Most people look at 7*5 = 11 and immediately say it's wrong. They say the 
answer is 35. Arithmetic is one of those things we learn in school, use everyday, 
and never think twice about again. So, when does 7*5=11? The answer is when 
using a clock. Or you could do it this way:   

 
7*5 = 35 
35/12 = 2 rem 11

or even

: ClockArith  ( n,n--)   * 12 mod  4.R ; 

Reach for your Clock 
We are going to advance the clock�s hour hand 7 times in jumps of 5 hours each 
time. Doing this gives us this sequence: 

Jumps Clockface reads
0 5
1 10
2 3
3 8
4 1
5 6
6 11

When we multiply, we expect 7*5 to give the same result as 5*7. The fact that we 
are doing clock arithmetic should not change that. Here is the sequence for 5*7. 

Jumps Clockface reads
0 7
1 2
2 9
3 4
4 11

which ends up with the same result as before, 11. 
 
When I did this the first time two things struck me. The first was that there is a 
rollover to contend with. Every time the clock hand passes 12 we go back to 1 again. 
 

mailto:gtelfer@po.synapse.ne.jp


 

 25

The second thing was that here is a lovely example of a loop in action. 

Time for Forth 
This is an apparently simple problem and so the amount of code should reflect 
that. If we feel the code is getting too big then the chances are we do not 
understand the problem as well as we thought we did; or we are trying to solve a 
different problem. 

Words and Names 
Forth relies on words. These are the equivalent to procedures in other languages. 
Every language tutorial stresses finding good names for procedures, but in Forth 
naming takes on greater significance. With my wordsmith's hat on, let's consider 
a top level word for the program which is what the user will see. 
 
Howeve even with my thesaurus this is proving difficult. I want to give a feeling 
of both the clock and the arithmetic. A decision must be made and I am going for 
TickTock*.  

: TickTock* ( n,n--)   ... do something ... ; 

Now all we have to do is fill in the blank space. 

The Program 
Looking back at the initial sequences, we can see two features. One is the idea of 
repeating a task, (counting the number of times we have jumped) and the 
second is the addition to the current hour hand value of a constant amount. 
 
Let's replace do something with a name. Looking in my thesaurus again I come 
across Progression. It's perfect! TickTock* makes a Progression round the 
clock (and sounds more regal than advance). 
 
: TickTock* ( n,n--)   Progression ; 

To make a progression we need to progress one step at a time. That step needs 
to be inside a loop that keeps track of how many steps we have taken.  
 
Suddenly a lot of terms are popping up. We don't want to get confused about the 
exact meaning of each:  
 
TickTock*   is the top level word 
Progression is the loop 
Progress    is one complete step of the loop 
 
Forth gives us the choice of  four looping structures. One of these keeps an 
automatic check on the number of times we've looped. It has the form: 
   n n Do ... Loop 



 

 26

A bonus is that we can display the index from inside the loop with the built-in 
word I. 

Helping Yourself 
This is not a big program but anything that helps to understand what is 
happening is worth doing. When I'm in the early stages of sketching out words, I 
find that plugging in actual values into the stack diagrams instead of just n1,n2 
helps me think about what I want to happen.  
 
Choose a standard way to describe the type of words. I always use upper case 
letters at the beginning of Forth words. For variables and constants I always start 
with an underscore:  _Name . 
 
When a variable or number on the stack has changed value then I put a tick at 
the end:  _Name'. 

Stack or Variables 
Purists use the stack by tradition. Values on the stack are effectively unnamed 
local variables. Named variables are global. In many cases this works very well, 
and Forth provides many words to manipulate the stack.  
 
I think that the stack can be a distraction at the time of developing a program. 
You have enough on your mind trying to get the logic and function right without 
getting bogged down ordering values on the stack. The stack manipulation 
words themselves can also get in the way of understanding the essence of what 
is happening inside a word. For this program, I'm going to use named variables. 
 

Variable _Jump 
Variable _ClockFace 

Progression 
Progression is the loop. We expect to be calculating 7*5, where 7 is the 
number of times around the loop and the 5 is the amount to jump each 
time. We can store that safely away leaving the 7 as the upper loop limit. 
 
: Progression ( 7,5--) (7,0 as loop limits)

_Jump ! 0 Do Progress Loop ;

Progress 
Progress needs to add the value of _Jump to the _ClockFace. The only 
problem is to check for the rollover. 

: Progress ( _Jump, _ClockFace -- _ClockFace')
_Jump @ _ClockFace @ + RollOver? _ClockFace ! ;



 

 27

Having the addition naked so to speak looks messy and so we can take it out 
and give it a word of its own:  
 
: +Jump ( _Jump,_ClockFace -- _ClockFace')

_Jump @ _ClockFace @ + ; 

Rolling Over 
Checking for a rollover means deciding to do something or do nothing to the 
clock's current value. If the clock's value goes over 12 then we do something; 
else we do nothing. 
 
The number 12 doesn't tell us anything about what it is. Let's hide it behind a 
constant. Just calling it Twelve doesn't give any more information than the 
number. The number is the high point on the clock. Let's call this constant 
_ClockHigh. 
 
12 Constant _ClockHigh
 
Now we have the number to be tested we need to make the test. This is 
RollOver? If the number being tested is greater than 12 how do we correct it? 
The word Mod does this for us.  
 
: RollOver?  ( _ClockFace -- _ClockFace or _ClockFace') 
   _ClockHigh Mod ; 

Displaying the Results 
We've given no thought yet to displaying the results. I considered having a full 
clock face but a quick look at the Windows programming involved dissuaded me. 
For this project I want to follow the layout of Figure 1. 
 
First of all there is a title line. Underneath this, on each pass we want to display 
the number of advances and the curent hour hand value. 

The Title 
This can be a simple string of text. 
 
: ClockTitle  (--)  Cr Cr ." Jumps     Clockface reads" ; 

Showing the Progression 
Remember the do loop lets us display the current index value using the word I 
and we want to take advantage of this. We must display each clockface as it is 
calculated inside the loop after we have displayed the index. 
Two words can do this. 
 

: ShowTimes  ( Index --) 3 .R ; 
: ShowClockFace  ( _ClockFace --) 11 .R ; 



 

 28

 
All they need to do is get into the right position under the title and then display 
the times round and the current clockface. 
 
Keeping things as simple as possible I've used the word .R. This offsets by the 
number of fixed width spaces given before displaying the number found on top 
of the stack. 
 
Progression now looks like this: 
 
: Progression  ( 7,5--) (7,0 as loop limits)  
  0 Do Cr I ShowTimes Progress Loop ; 
 
The clock face can be displayed inside Progress. Making this change means 
Progress looks like this: 
 
: Progress  ( _Jump, _ClockFace -- _ClockFace')    
   +Jump RollOver? ShowClockFace _ClockFace ! ; 

Time for TickTock* 
Everything seems fine and so we can put write that top-level word. 
 
The word must make a progression, but before that it should display the text. 
The word we wrote to do this was ClockTitle. Many programs leave untidy bits 
after they finish. It's only polite to tidy up afterwards. Here we just need to reset 
the _ClockFace to 0 and move the Forth's �OK� down using Cr. 
 
: TidyUp (  n --)  0 _ClockFace ! Cr ; 
 
: TickTock*  ( n1,n2 --)   ClockTitle Progression TidyUp ; 

ARRGH! 
It doesn't work! Tracking down bugs is a laborious but inevitable part of 
programming. So where is this little bug? Look at the code: Rollover!  I'm 
storing the _ClockFace but immediatle afterwards I need to display the clock 
face in Progress, but there's nothing there. 
 
Moving the _ClockFace ! into Progress and providing a DisplayCopy for 
ShowClockFace should solve the problem. 
 
Now try again. 

Test Results 
Type the two numbers (positive ones, please) you want to multiply and a space, 
then type the word TickTock* and press the Enter key 
 



 

 29

ok 
7 5 TickTock* 
 
Times   Clock Reads 
  0          5 
  1         10 
  2          3 
  3          8 
  4          1 
  5          6 
  6         11 
 
5 7 TickTock* 
 
Times   Clock Reads 
  0          7 
  1          2 
  2          9 
  3          4 
  4         11 
 
5 13 TickTock* 
 
Times   Clock Reads 
  0          1 
  1          2 
  2          3 
  3          4 

4 5 
 

The Complete Code 
 

.( Clock Arithmetic Program) 
 
\ Helper Words 
12 Constant _ClockHigh  \ Rollover value on this clock 
Variable _Jump 
Variable _ClockFace   0 _ClockFace ! \ set the clock 
 
\ Display Words 
 
: ClockTitle  ( --)  Cr Cr ." Times   Clock Reads" ; 
: ShowTimes  ( --)  3 .R ; 
: ShowClockFace  ( --)   11 .R ; 
: DisplayCopy  ( _ClockFace -- _ClockFace, ClockFace) Dup ; 
 
\ Main Words 



 

 30

: TidyUp  ( n --)   0 _ClockFace ! Cr ; 
: _Warn Cr Cr ." Sorry, clocks don't use negative values" Cr 
   ." and so don't enter them" Cr ; _Warn 
: Instructions  ( --) Cr  
   ." Type the two numbers you want to multiply" 
   ."  and a space," Cr 

." then type the word TickTock* and press the Enter key" Cr ;   
 

 Instructions 
 
: +Jump  ( -- _ClockFace') _Jump @ _ClockFace @ + ; 
: RollOver?  ( _ClockFace -- _ClockFace or _ClockFace') 

    _ClockHigh Mod ; 
: Progress   ( --) 
   +Jump RollOver? DisplayCopy ShowClockFace _ClockFace ! ; 
: Progression  ( n,n--)  _Jump ! 0 Do Cr I ShowTimes  Progress Loop 
; 

: TickTock*  ( n,n--)  ClockTitle Progression TidyUp  ;   



 

 31

 

 
FIG UK Downloads 

 
Visits to the FIG UK web site have been running at such high numbers 
(1000/month) that Jenny, our webmaster, has carried out a detailed 
analysis, especially for the downloads of Forthwrite. 
 
After filtering out any unsuccessful attempts, over a 5-day period in 
January, more than 40 issues were downloaded each day. 
 
These downloads were not especially biased towards the latest issue as 
might be expected, but spread over all the 10 issues we currently have on-
line. I think this means that people are hearing about Forth, discovering 
the site and downloading the issues that sound most interesting. The 
numbers involved suggest that there is far more interest in Forth than 
might be  thought just from the size of the FIG UK membership. 
 
The challenge for us is to make it as easy as possible for some of these 
1000 visitors to get started in Forth. 
 



 

 32

Henry Vinerts 
Volvovid@aol.com 

Across the Big Teich 
Henry Vinerts 

This material was prepared for Vierte Dimension by Henry Vinerts, 
and printed by permission of Forth Gesellschaft (German FIG) 

 
_FIG Silicon Valley Chapter Meeting - Nov. 2001_   
 
Greetings from Silicon Valley! 
 
"If the computer had been invented in China, what problems 
would English-speaking people have to surmount in order to use 
it?" Thus begins Timothy Huang's article in June 1984 issue of 
Dr. Dobb's Journal. Would you like me to send you the 
procedure for extracting the cube root by bead arithmetic 
(from "How to Use the Chinese Abacus" by Kwa Tak Ming)? I am 
just kidding, I know that in today's world it is more important to 
know how to underscore text in Visual Basic or in Win32Forth. 
 
That almost sums up our topics in the first SVFIG meeting of 
year 2002. 
 
I don't know what happened to Huang's First Chinese Forth, but  
now, almost eighteen years later, Dr. Ting's continuation of the  
same effort seems like a case of deja vu or "Alles schon  
dagewesen," as Ben Akiba would have said in German. Except, 
with his customary attention to detail and his infinite capacity 
for learning, Ting has brought Bezier curves and B-splines into 
the mechanics of drawing Chinese characters, arriving at yet 
another interesting subject for one of his lectures. As is usually 
the case, Ting's talk stimulated the participation of the 
audience, especially of those who enthusiastically wished to 
share their knowledge in related and unrelated subjects. And 
there is a lot of collective knowledge in that one room on the 
fourth Saturday of each month. 



 

 33

 
I can't say whether it was good or bad that this month we were  
back in the old room without direct Web access. Less  
entertainment..., more undivided attention to John Peters'  
campaign of improving Win32Forth, especially when he was 
inviting everyone to crash it. I wonder what Dave Pochin would 
have said, seeing what to me looked like a couple of dozen farm 
boys in delightful excitement, having come upon an unattended 
farm tractor. The "Windows monster" is very inviting, everyone 
wants to drive it, to show off his skills. "Don't panic, press F1 
now!" "Let me try, I think I know how to do it!" 
 
The boys did not even ask for an afternoon break, and the 
tractor still had 15 potential drivers at 4 P.M., when it was time 
to go home. Both copies of Forthwrite #115, which I had 
received just in time for the meeting, had circulated among the 
group; there were even a few "readers" of the batch of Vierte 
Dimensions that I had brought along. I am disappointed to 
report, however, that when Alan Furman tried to bring Hans 
Eckes' "Forth stamp" article (VD 4/2000) to the attention of 
the group, their interests were somewhere else, or perhaps the 
mindset of the SVFIG has changed more than I would like to 
believe. 
 
I would like to end with a humorous note, but, since I am free to  
write whatever is on my mind, I'll save it for next time and,  
instead, share a quote from Warren S. McCulloch with those 
who consider themselves old Forthers:  
 
"There is a utility in death because ... the world goes on changing 
and we can't keep up with it." 
 
Keep smiling, 
 
Henry 



 

 34

 
_FIG Silicon Valley Chapter Meeting - Feb. 2002_   
 
My report of the SVFIG meeting of February 23rd can be  
summarized in Forth-like manner as  JSB > DLL and I trust that 
it will hold true for generations to come. 
 
It means that the works of J.S. Bach are greater than all of the  
dynamic link libraries that have been produced by thousands of  
monkeys (for lack of a better word). It also reinforces my belief  
that most of the worthwhile and enduring creative works stem 
from the genius and productive capacity contained in a single 
mind. 
 
You see, in the morning session Dr. Ting delighted an audience  
of about ten of us with an organ performance of Bach's "Art of  
Fugue," the organ being a 4.77 MHz XT, programmed in Forth 
and  
running four speakers through Ting's own hand-made oscillator  
card. In this 1988 package Ting used only 4 channels, so some of  
the 15 fugues were abbreviated, but the music sounded very  
realistic, which, as Ting explained, is due to the fact that pipe  
organ output can quite well be matched with square waves. 
 
The whole concert fits on four 360KB floppy disks, but for 
those  
who wish to hear it again on their modern machines, Ting has cut 
a 600 MB CD, which, albeit with a few stray notes, can provide 
one with almost an hour's enjoyment of Bach's gloomy grandeur. 
Amazing stuff! Now I'd rather go back to read my old copy of  
"Goedel, Escher, Bach," than continue with this report... 
 
Let it suffice to report that the committee which was supposed  
to work on modifications of Win32Forth in the afternoon 
session  



 

 35

was strangely absent. A number of listeners left at lunch, to be  
replaced by a few who had missed the concert because the 
WWW had demanded their morning; yet, nothing new was said 
or done about Win32Forth. Bob Smith was dutifully there, being 
one of the original contributors to F-PC, but I think that since 
Bob is an accomplished organist and accordionist, the morning 
was the main reason for his presence. Perhaps, unless we 
retrieve the single mind of Tom Zimmer from Texas, not much 
will happen to make us listen to Win32Forth instead of Bach. 
 
Dave Jaffe gave a short description of his latest Forth 
programs 
for threshold acquisition in switch debouncing circuits and for  
converting parallel-port output lines into serial streams, and  
then it was question-and-answer time for the remaining few who 
are  looking for ways to pursue their chosen tasks with a 
minimum of lost time in the today's information jungle. 
 
Happy hunting to you all, 
 
Henry 



 

 36

Alan J M Wenham  
01932 786440 

101745.3615@compuserve.com  
 
 

Vierte Dimension 4/01 
Alan Wenham 

 
 
 
 
 
 
 

General 
 Among other things, the editor Martin Bitter reported that 

Ralph Hempel had placed a new version of pbForth on the 
Internet at http://www.hempeldesigngroup/lego/pbForth/index.html. 
Martin is also setting up a literature service (Martin Bitter, 
Fred Behringer). 
An interesting extract concerning Forth is published on the 
homepage of Bernd-M.Stejskal at 
http://www.stejskal.de/web/computer/forth/index.html. He also noted 
that fewer and fewer authors were writing for VD. 
 

Riddles 
Fred Behringer 
behringe@mathematik.tu-

muenchen.de 
 

Fred Behringer discusses solutions to his VD2/2000 riddle. 

MickerForth-MACRO4th.asm 
Wolfgang Allinger 
All@business.kbbs.org 

In connection with use on a microcontroller, in this case an 
8051, the author needed 32-bit arithmetic.   The assembler 
routines he found in the literature were not clear. He 
constructed 35 Forth-like assembler macros and used these in 
conjunction with a stack with three 32-bit entries and a work 
register. 

Reviews 

Fred Behringer 
behringe@mathematik.tu-

muenchen.de 
 

Fred Behringer reviews the Dutch Figleaf for August 2001 and 
Forthwrite 112. 

Alan provides a look at the latest issue of the German FIG 
magazine. To borrow a copy or to arrange for a translation of an 

individual article, please call Alan. 
 

mailto:101745.3615@compuserve.com
http://www.stejskal.de/web/computer/forth/index.html
mailto:behringe@mathematik.tu-muenchen.de
mailto:behringe@mathematik.tu-muenchen.de
mailto:behringe@mathematik.tu-muenchen.de
mailto:behringe@mathematik.tu-muenchen.de


  37

 
Tower forever-  a further approach 
Michael Kalus and Adolf 
Krueger 
 

As reported earlier (Forthwrite 114, p.33), Fred Behringer 
and Martin Bitter have devised a means to prevent the Lego 
robot IR transmitter from disconnecting after 5 seconds of 
inactivity.  However, the transmitter then remains switched 
on until the battery is removed. Michael and Adolf make use 
of the DTR-signal to ensure that the transmitter is again 
disconnected from the battery as soon as the terminal 
program ( eg HyperTerminal) ends or the plug of the COM-
link is removed.  A circuit diagram is given together with pin-
outs of the 9-pin serial cable and photographs of the circuit 
board. 

Syntax of Decision Tables in Forth 

Klaus Zobawa 
Klaus.Zobawa@t-online.de 

This was a paper read at the 2001 AGM of Forth Gesellschaft 
(Forthwrite 112 p.17). The problem originated from a 
surgical diagnostic device which was required to be provided 
with some form of computer intelligence. An H8/300 micro 
controller was added and a decision table technique was 
chosen to be the best solution. Programming such decision 
structures by way of nested IF ELSE THENs is difficult to do 
and bound to fail if  later modifications and easy maintenance 
are needed. The author uses Forth to imitate the immediate 
structure of the graphical representation of a decision table. A 
vertical double stroke becomes the Forth word which signals 
the entry of an output field, etc.. 
 

The Forth "stamp" - the prototype 
Hans Eckes 
hanseckes@addcom.de 

The "BASIC -postage stamp" is familiar in Germany as a 
development microcontroller of postage stamp size with 
BASIC as the programming language.   Hans reports on a 
similar project with the PSC100 from Patriot as processor and 
a 32-bit F83 Forth with assembler, disassembler, and 
multitasker as programming environments.   Block diagrams 
and schematics are included. 
 

Quartus Forth - first experiences 
Wolfgang Allinger 
 

Wolfgang wanted to program a service overlay for a Palm 
PDA. Quartus is a 16-bit Forth for Palm PDAs, available as 
shareware.  This note relates his preliminary experience of 
using it. 



 

 38

On the Lego Mindstorm's infra-red data transmission 

Michael Kalus and Adolf 
Krueger 
Adolf.Krueger@t-

online.de 

This is a very good analysis of data transmission from the PC 
to the infrared transmitter and then  from there to the RCX 
(Lego Robot building block H8/300) and back again.   What 
the authors found out was that there is no way of 
constructing a multiplex process to operate several robots 
simultaneously without mutual disturbance and this cannot 
be done if only the original hardware and firmware supplied 
is used.  Other means will be needed. 
 

Code definitions without CODE and ENDCODE 
Fred Behringer 
behringe@mathematik.tu

-muenchen.de 

This is Fred's "Column for language migrants".   He shows the 
ease with which anyone can, in Forth, construct in-line 
assembler code in colon definitions ASM[ ... ]FORTH.   Quite 
incidentally, Fred has developed two words ASM]FORTH ... 
FORTH[ASM with which one can easily change from assembler 
code (as inside a CODE definition) to high level Forth code 
and back again.  ASM]FORTH and FORTH[ASM replace ]FORTH 
and ASM[ completely and can be used in a CODE or a colon 
definition in any order as often as needed. 

Hardcode-Assembler  "brute-force" for the Lego RCX 
Martin Bitter 
martin.bitter@forth-ev.de 

The versatility of the RCX building block is limited by the 
Lego software to those possibilities (not many) foreseen by 
Lego.  "Limitations through the software are limitations of 
personal freedom!  Forth can help here!" The display 
segments (on the building block) are addressed by the setting 
of individual bits in the RCX -workspace. Martin suggests, 
through development of additional CODE definitions in 
pbForth on the RCX, how to generate a rudimentary cross-
assembler on the PC. 

mailto:behringe@mathematik.tu-muenchen.de
mailto:behringe@mathematik.tu-muenchen.de


 

 39

Chris Jakeman 
cjakeman@bigfoot.com 

 
 

Did you Know? 
Forth Helps Nobel Prize Winners 

 
While other parts of Forthwrite bring you all the news and the latest ideas 

and developments, the Did You Know? section highlights achievements in 
Forth, both recent and historical (taking care always to distinguish hearsay 

from attested fact). 
 

It was 1971 when the first standalone Forth that we'd all recognize was developed. It 
was used to do data acquisition and control for the 36' (11m) radio telescope 
belonging to NRAO9 on Kitt Peak Mountain, Arizona.  
 
http://www.bell-labs.com/user/feature/archives/penzias/ reports: 
 
�Penzias also has been honoured for his pioneering work in interstellar chemistry, 
discovering the presence of key chemicals among the stars. Using his pioneering 
techniques to observe millimeter-wave radio spectra emanating from space, Penzias 
and his colleagues identified carbon monoxide and several other simple molecules in 
the dusty clouds in interstellar space. 
 
Among other finds, the team pinpointed the  
nuclear composition of the constituent atoms of 
these molecules--the remnants of burned-out stars 
and the raw materials for new ones. This work 
gave astronomers an important new window into 
stellar composition and life cycles, and has 
grown into a flourishing branch of astronomy. 
 
Penzias, Wilson and their Bell Labs co-worker Keith 
Jefferts discovered the existence of deuterium 
(heavy hydrogen) in outer space in 1973, 
providing additional clues to the birth of the 
universe.� 
 
Penzias and Wilson had previously10 made the discovery of cosmic microwave radiation 
in interstellar space which won them the Nobel Prize. 

 

Source � Bell Labs and Elizabeth Rather, Forth Inc 
 

                                                      
9 National Radio Astronomy Observatory 
10 1963, see http://www.bell-labs.com/project/feature/archives/cosmology/ 

http://www.bell-labs.com/user/feature/archives/penzias/


 

 40

Letters 
 

 
 
 
Chris  
Jakeman 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Thierry  
Charlier  
de Chily 
 
 
 
 
 

Dear Editor, 
 
I found your article on "Planet Jupiter", March issue quite 
fascinating but was sad to find you included the line "Forth was a 
compact and fast programming language". 
 
Forth continues to serve the embedded computer market wherever 
it is important to make the most of scarce resources, such as 
spacecraft and mobile equipment. For example, the Titanic wreck 
was discovered using a submersible controlled by Forth. 
 
Forth has been an ISO standard for many years and the interactive 
systems produced by commercial Forths are as fast as the non-
interactive ones produced by C. The record for performance is 
currently held by MPE Ltd, a UK company. More details can be 
found at the Forth Interest Group web-site http://www.fig-uk.org 

The Magazine Team are always pleased to get feedback and encouragement. The first 
letter was published in the latest PCW magazine following a retrospective on the 
Jupiter Ace computer. 
 

Another F11UK processor board has been sold, this one to Thierry Charlier de Chily who 
struggled with a faulty chip. Here is his reponse which is re-printed with his permission. 

From <thierry@charlierdechily.org> 
Hi, 
 
I have spent the last weeks totally concentrated on trying to make 
"my" F11 board running. After a pit stop, Jeremy fixed it and 
according to his message the board is now up and running.  I am 
longing to receive it. 



 

 41

 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

I want to thank Jeremy for his assistance, Graeme Dunbar and Paul 
Akterstam for their contribution and I want to thank all of you (on 
the F11UK mailing list) for your patience. 
 
Time has come to introduce myself. 
 
Me: I am French, 37 years old. I live in the south of France at 20 
km of Cannes. I work in Sophia Antipolis, which, despite its name, is 
located in France, close to Cannes. It is a Technopole (�large urban 
centre with teaching and research facilities to support  
development of hi-tech industries�). I am a project manager. 
Formerly, I was a Unix/C programmer. 
 
Forth and me: a friend of mine gave me a small introduction to 
Forth 18 years ago. He owned an Amstrad 6128 and I an Apple II. 
Compared to Basic (GWBASIC), the programming language taught 
at the University at the same time, Forth was a real shock to me. I
bought and read "Forth � Salman, Tisserand and Toulout � Eyrolles 
editions" and "Débutez en Forth � Leo Brodie � Eyrolles editions" (I 
guess that it's the translation of "Starting Forth"). Unfortunately, 
I did not put these readings in practice. Every 3 or 4 years I read 
these books again (I have bought and read "Turbo Forth � REM 
Corp editions" too) and try to find an idea of application to 
implement in Forth. Nothing came. Thanks to robotics, time has 
come to practice Forth. 
 
Robotics and me: Robotics is a recent hobby for me. Few years 
ago, my eyes fell on a Mindstorms Lego box. It was quite expensive. 
I had to wait a while and I bought one box last year in the sales. 
Just for fun, I started to thing to participate to a local robotics 
contest (http://195.83.41.66/robotik2.html) with a Lego Robot. 
The contest wasn't that easy (the rules were those of the French 
Robotics Cup - http://www.robotik.com) and because of a lack of 
time I did not participate but I swore to participate in June 2002. 
I read a lot and I chose a cheaper technology (Microchip PIC) in 
order to be able to build a team of "cooperative" robots with just a 
few bucks. I made some basic experiments in assembler and 
searched for a high-level programming language. 
 



 

 42

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

I realised at the end of 2001 that I was very late in my planning. I 
tried to find a "high level" micro-controller to speed up the 
software design phase and the coding phase. The price was no 
longer an issue for me (though it still was for my wife :-) ) 
because cooperative robots were forbidden in the new rules.  So I 
ordered an OOPIC which is in fact a PIC with a built-in Object 
Oriented kernel and library. The library includes servos, pmw, 
blinking LED... (www.oopic2.com). 
 
At the same time, I discovered the F11 board. This board was 
cheaper than the other 68HC11 boards available on the market, it 
was an opportunity to practise Forth and Jeremy and I were on the 
same wavelength. So I  registered with FIG-UK and ordered the 
board despite the fact that I couldn't find any Forth Robotics 
vocabulary on the Net. 
 
I am always late on my planning, but I am glad to have an 
opportunity to practise Forth. The other good news is that the 
rules of the contest have changed. This year, in order to have more 
participants (only 3 teams last year), it will be an Introduction To 
Robotics (the French Robotics Cup's rules are quite elitist). They 
will lend a robot, so no design and mechanical issues. I have one 
more year to get ready... 

http://www.oopic2.com/


 

 43

  
 
Chairman Jeremy Fowell,  11 Hitches Lane, EDGEBASTON B15 2LS 
      0121 440 1809 jeremy.fowell@btinternet.com  
Secretary Doug Neale,   58 Woodland Way, MORDEN  SM4 4DS 

  020 8542 2747 dneale@w58wmorden.demon.co.uk  
Editor Chris Jakeman,  50 Grimshaw Road, PETERBOROUGH  PE1 4ET 

  01733 352373 cjakeman@bigfoot.com  
Treasurer Neville Joseph,   Marlowe House, Hale Road, WENDOVER HP22 6NE 

  01296 62 3167 naj@najoseph.demon.co.uk   
Webmaster Jenny Brien,   Windy Hill, Drumkeen, BALLINAMALLARD,  
     Co. Fermanagh  BT94 2HJ 

   02866 388 253 webmaster@figuk.plus.com  
Librarian Graeme Dunbar  Electrical Engineering, The Robert Gordon University,  
     Schoolhill, ABERDEEN AB10 1FR 
     01651 882207 g.r.a.dunbar@rgu.ac.uk 

 
Membership enquiries, renewals and changes of address to Doug. 
Technical enquiries and anything for publication to Chris. 
Borrowing requests for books, magazines and proceedings to Graeme. 
 
 

   For indexes to Forthwrite, the FIG UK Library and 
   much more, see  http://www.fig-uk.org

 
   Payment entitles you to 6 issues of Forthwrite 
   magazine and our membership services for that 

   period (about a year).  Fees are: 
 
National and international  £12 
International served by airmail £22 
Corporate    £36 (3 copies of each issue) 

 
  Your membership number appears on your envelope 
  label. Please quote it in correspondence to us. Look 

out for the message "SUBS NOW DUE" on your sixth and last issue and please 
complete the renewal form enclosed. 
Overseas members can opt to pay the higher price for airmail delivery. 

 
  Copyright of each individual article rests with its 
  author. Publication implies permission for FIG UK to 

reproduce the material in a variety of forms and media including through the Internet.

FIG UK Web Site 

FIG UK Membership

Forthwrite Deliveries 

Copyright 

mailto:jeremy.fowell@btinternet.com
mailto:dneale@w58wmorden.demon.co.uk
mailto:cjakeman@bigfoot.com
mailto:naj@najoseph.demon.co.uk
http://forth.org.uk/


 

 44

 
 
 
FIG UK Services to Members 
 

Magazine 
 
 
 
 
 

Library 
 
 
 
 
 

Web Site 
 
 
 
 
 
 

IRC 
 
 
 

Members 
 
 
 
 
 

Beyond the 
UK 

 
 
 
 
 
 
 

Forthwrite is our regular magazine, which has been in publication 
for over 100 issues. Most of the contributions come from our 
own members and Chris Jakeman, the Editor, is always ready to 
assist new authors wishing to share their experiences of the 
Forth world. 
 
Our library provides a service unmatched by any other FIG 
chapter. Not only are all the major books available, but also 
conference proceedings, back-issues of Forthwrite and also of 
the magazine of International FIG, Forth Dimensions. The price of 
a loan is simply the cost of postage out and back. 
 
Jenny Brien maintains our web site at http://www.fig-uk.org.  She 
publishes details of FIG UK projects, a regularly-updated Forth 
News report, indexes to the Forthwrite magazine and the library 
as well as specialist contributions such as �Build Your Own 
Forth� and links to other sites. Don�t forget to check out the �FIG 
UK Hall of Fame�. 
 
Software for accessing Internet Relay Chat is free and easy to 
use. FIG UK members (and a few others too) get together on the 
#FIG UK channel every month. Check Forthwrite for details. 
 
The members are our greatest asset. If you have a problem, 
don�t struggle in silence - someone will always be able to help. 
Do consider joining one of our joint projects. Undertaken by 
informal groups of members, these are very successful and an 
excellent way to gain both experience and good friends. 
 
FIG UK has links with International FIG, the German Forth-
Gesellschaft and the Dutch Forth Users Group. Some of our 
members have multiple memberships and we report progress 
and special events. FIG UK has attracted a core of overseas 
members; please ask if you want an accelerated postal delivery 
for your Forthwrite. 
 


	Forth News
	Special Features of kForth
	From the ‘Net
	Flickwriter Project
	euroFORTH 2001 – The Report
	Presenting The FIG UK Awards of 2001
	The FIG-UK Library
	Seven Times Five Equals Eleven
	FIG UK Downloads
	Across the Big Teich
	Vierte Dimension 4/01
	Forth Helps Nobel Prize Winners
	Letters

