

ISSN 0265-5195

Special Issue June 2000

An Introduction to Machine Forth John Tasgal
 An Introduction to Color Forth John Tasgal
 The BMP Example John Tasgal

Chair Chris Hainsworth, Microplex Ltd., 5a Riverfield Road, STAINES TW18 2EE
 01784 457565 chris.hainsworth@dial.pipex.com

Secretary Doug Neale, 58 Woodland Way, MORDEN SM4 4DS
 020 8542 2747 dneale@w58wmorden.demon.co.uk

Editor Chris Jakeman, 50 Grimshaw Road, PETERBOROUGH PE1 4ET
 01733 753489 cjakeman@bigfoot.com

Treasurer Keith Matthews, 20 Spindlebury, CULLOMPTON EX15 1SY
 01884 34818

Webmaster Jenny Brien, Windy Hill, Drumkeen, BALLINAMALLARD,
 Co Fermanagh BT94 2HJ

 02866 388 253 jennybrien@bmallard.swinternet.co.uk
Librarian Sylvia Hainsworth, Microplex Ltd., 5a Riverfield Road, STAINES

 01784 457565 sylvia.hainsworth@dial.pipex.com

Membership enquiries, renewals and changes of address to Doug.
Technical enquiries and anything for publication to Chris Jakeman.
Borrowing requests for books, magazines and proceedings to Sylvia.

For indexes to our Library and Forthwrite and much more, see http://forth.org.uk

 Payment entitles you to 6 issues of Forthwrite
 magazine and our membership services for that
 period (about a year). Fees are:

National and international £12
International served by airmail £22
Corporate £36 (3 copies of each issue)

Your membership number appears on your envelope label. Please quote it in
correspondence to us. Look out for the message "SUBS NOW DUE" on your
sixth and last issue and please complete the renewal form enclosed.

Overseas membe

FIG UK Committee

FIG UK Web Site

FIG UK Membership

Forthwrite Deliveries
1

rs can opt to pay the higher price for airmail delivery.

http://forth.org.uk/

Editorial

This is a special issue to publish in one place a
series of 3 articles commissioned from John
Tasgal.

The recent software explorations of the originator of Forth,
Charles (Chuck) Moore, have attracted lots of attention in the
Forth community. Chuck has given several talks and more
information is available on the Ultra Technology web site
published by Jeff Fox (www.ultratechnology.com) . A paper on
implementing Machine Forth was presented by Reuben Thomas
at the 1999 euroFORTH conference.

However, there are still details which are difficult to pin down
and Chuck has published some code examples that warrant a
detailed commentary. With help from Jeff Fox, John has
endeavoured to fill this gap.

Until next time, keep on Forthing,

John Tasgal

0161 7739365
john@tcl.prestel.co.uk

An Introduction to Machine Forth
John Tasgal

There has been a lot of interest in Charles (Chuck) Moore's recent
work on special processors and the languages that go with them

(see issue June 1999 for an interview with Moore). These are Forths
that deviate from the classical model to match the hardware more

closely. The differences challenge our assumptions about standard
Forth; could it become both simpler and better?

John Tasgal has researched both Machine Forth and Color Forth

and expounds these differences. Alongside the Color Forth article (in
the next issue) is a commentary on some of Chuck's published code,

showing how complex code can be written with a simpler Forth.

Machine Forth (MF) is a development, principally by Charles Moore and Jeff
Fox, of classical Forth. Its aim is to simplify both the design of stack chips and
the Forth-style languages they use. It is a low-level Forth closely mapped to the
underlying hardware.

There are two quite separate parts to this language:

The first part is a core which is the instruction set of a MISC (Minimal
Instruction Set Computing) chip. The second part is an extension to the
instruction set to allow word and dictionary building etc. .

As far as I know there is no standard and so I have chosen to use the Ultra
Technology F21 chip as the 'reference' for the MF instruction set. This article
describes the 'programming model' of a MISC chip. I only describe hardware
where relevant.

Notation
T(n) The n'th bit of register T
T(n1 .. n0) A bitfield in register T from bit n1 down to bit n0

Phrases
To present the structural templates below in compact form these abbreviations
are used for phrases, that is, a sequence of tokens :

flag? A phrase which leaves a value in T(19..0) for use by IF
carry? A phrase which leaves a value in T(20) for use by -IF
<tt The phrase executed when IF is true
<ff The phrase executed when IF is false

The MISC Chip
��There are 5 registers, 2 circular stacks, and a 5-bit opcode with 27

instructions decoded.

��All on-chip registers are 21 bits wide.

��The MSB, bit 20, is used for memory control for instructions which access
external memory; as carry for the add instruction; and as an ordinary bit
for the others.

��IF reads bits 19..0 and jumps if they are false. It does not pop the stack
(unlike a classical IF). It is therefore called 'non-destructive'.

��-IF jumps if bit 20 is false. This too is non-destructive.

��2/ on the F21 shifts all bits T(20..0) right. It can therefore be used either
as 2/ or U2/, or for multiple-precision arithmetic.

The Registers
��PC The Program counter

��A The Address register for memory access

��T Top of data stack, the implied operand for arithmetic, logic and IF
 instructions

��S The 'subtop' register, the second on the data stack.

��R Top of return stack

The Circular Stacks
��The Data Stack (S2 .. S11) A 16-element circular stack below T

 and S

��The Return Stack (R1 .. R10) A 16-element circular stack
below R

The Instruction Set

Control

��ELSE Unconditional jump

��IF Non-Destructive IF. Jump if T(19..0) is false (leaves stack
 untouched)

��-IF Non-destructive jump if-carry-false

��CALL A Subroutine call. Push PC+1 to R

��RET Return from Subroutine. Pop R to PC

A Register

��A (-- A ; T = A) Push A to T

��@A (-- n0 ; T = ^A) Fetch contents of memory at
 address A and push to T.

��@A+ (-- n0 ; T = ^A, A=A+1) Fetch A and push to T.
 Increment A.
 ('Auto Post-Increment')

��!A (n0 -- ; mem(A) = n0) Pop T to memory at address A

��!A+ (n0 -- ; mem(A) = n0, A=A+1) Pop T to memory at
 address A. Increment A

��A! (a0 -- ; A = T) Pop T to A

R Register and the Return Stack

��POP (-- r0 ; r0 -R- ; T = R) Pop R and push to T

��PUSH (n0 -- ; -R- n0 ; R = T) Pop T and push to R

��@R+ (-- n0 ; T = ^R, R=R+1) Fetch from address in R, push to
 T. Increment R

��!R+ (n0 -- ; mem(R) = n0, R=R+1) Pop T to memory
 at address R. Increment R

Data Stack Manipulation

��DUP (n0 -- n0 n0) Push T to T

��DROP (n0 --) Pop T

��OVER (n1 n0 -- n1 n0 n1) Push S to T

Arithmetic

��+ (n1 n0 -- n0' ; T = T + S) Add S to T.

��+* (n1 n0 -- n1 n0' ; T = T + S {T(0)=1}) If T(0) is true, add
 S to T non-destructively.
 A multiply step.
 (n1 n0 -- n1 n0 ; {T(0)=0}) If T(0) is false,
 do nothing.

Bitwise

��COM (n0 -- n0' ; T = NOT(T)) Complement T.
 Invert each bit.

��AND (n1 n0 -- n0' ; T = S AND T) AND S to T

��-OR (n1 n0 -- n0' ; T = S XOR T) Exclusive OR S to T

��2* (n0 -- n0' ; T = T * 2) Shift Left one bit.
 Write 0 to T(0)

��2/ (n0 -- n0' ; T = T div 2) Shift Right one bit.
 WriteT(20..1) to T(19..0).
 Write 0 to T(20).

Miscellaneous

��# (-- n0 , | <number) Fetch a number from PC+1 and push
 to T. Increment PC .

��NOP () Do nothing for 1 cycle.

The Extensions
Very few words need to be added to an assembler based on the above instruction
set to produce a working Forth system. The main categories are:

Definitions
��: Colon starts a new definition

��; Return. Does not end a definition

��CREATE ... DOES To allow new types

��CODE ... ENDCODE For machine code

Control Structures
These structures have the same meanings as Classical Forth but the flag/carry
remain on the stack after execution.

��flag? IF <tt THEN <ff If flag? is true execute <tt

��carry? -IF <tt THEN <ff If carry? is true execute <tt

��flag? IF <tt ELSE <ff THEN If flag? is true execute <tt, else

 execute <ff

��carry? -IF <tt ELSE <ff THEN If carry? is true execute <tt, else
 execute <ff

��(index) BEGIN ... NEXT A loop with an single index

��BEGIN flag? WHILE <tt REPEAT While flag? is true execute <tt

��BEGIN carry? -WHILE <tt REPEAT While carry is true execute <tt

��BEGIN ... flag? UNTIL Loop until flag? is true

��BEGIN ... carry? -UNTIL Loop until carry? is true

These allow words of various types to be defined; a dictionary to be built; and
for the control of program flow. Numerous other words for arithmetic, logic, and
Operating System functions can then be added to this extension.

Differences From Classical Forth

The Semicolon
This doesn't end a definition; it means simply 'return'. Definitions run into one
another.

The Address Registers
This moves addressing from the the data stack to a register, either A or R.
Both registers also have auto-post-incrementing instructions.
This changes the style of Forth as pointer arithmetic becomes the method of
choice over the use of DO ... LOOP's with indexes.

Non-Destructive Conditionals
In Classical Forth, IF destroys the top of stack. However in Machine Forth IF,
and therefore all the conditionals based on it, are non-destructive. This removes
the need to use DUP when conditionals repeatedly test a flag.

But, it may lead to more use of DROP to remove a flag which would have been
destroyed by a conventional conditional. This suggests that the behaviour of
other words and if necessary the program structure itself should be adapted to
optimise the use of non-destructive conditionals, rather than simply copying a
program written using the destructive versions.

This is another example of a change in programming style.

Tail-Recursion Optimisation
In any definition the return action of the word before a semicolon, and of the
semicolon itself, can always be compiled into a single return.

word1 lastword ;

As nothing happens between lastword returning and ';' returning, the lastword
return is superfluous.

A more elaborate example is the recursive call at the end of a WHILE loop. If we
have a series of nested calls then the last instruction is in each case a return. At
runtime this produces '; ; ; ; ;' viz. a sequence of returns.

The point is that when these calls unwind all that happens is that a sequence of
returns are executed, one after the other. Nothing is done between them. The
only necessary return is the first one pushed onto the return stack (and so the
last to be executed).

Removing these superfluous returns is known as tail-recursion optimisation. Most
Machine Forth compilers (and also Color Forth) contain a 'tail-recursion
optimiser'.

Two syntaxes are currently in use to indicate that this optimisation is to be
carried out:

��A special token '-;' (hyphen semicolon)

��A smart semicolon, which involves recognising the 'lastword ;' pattern.

Tail-recursion optimisation is achieved through a compiler optimisation, and also
by the syntax itself. The syntax is so designed that the programmer, simply by
writing a semicolon after a recursive jump, causes the compiler to build a single
return instead of nested returns. Therefore nested returns are eliminated at the
design stage through a syntactical feature.

This is really a very unusual and elegant approach to this problem.

Next - The remaining two articles in this series appear in the next issue of Forthwrite,
describing Charles Moore's newest Forth, Color Forth which builds on Machine Forth.
This is followed by a detailed commentary on some of Chuck's Color Forth code to see
how it is used in practice.

John Tasgal
0161 7739365

john@tcl.prestel.co.uk

An Introduction to Color Forth
John Tasgal

Alongside this Color Forth article is a commentary on some of

Chuck's published code, showing how complex code can be written
with a simpler Forth. John's introduction to Color Forth is necessarily
incomplete as a definitive and comprehensive description will require

Chuck's assistance.

Color Forth (CF) is an extremely original and interesting attempt to simplify
both the structure and appearance of Forth. It inherits several features of
Machine Forth, including the use of address registers. But Charles Moore has
reverted in this, his latest Forth, to the destructive conditionals of Classical Forth.

Its two principal innovations are the use of colour to signify syntactic or
semantic categories; and the simplification and reduction in the number of
control structures.

The original source code was first shown on a monitor using a black background
with coloured text. For obvious reasons of legibility I have changed the colour of
the execution-mode tokens from white to black. There is also a special space
character, a green space, which is shown here as a green underscore after the
token
i.e. 'token_'

The effect is to compile a literal: pop the top of stack; compile it's value; at run-
time that value is pushed.

Note that in Color Forth there are no lines of source text: the code is interpreted
token by token.

This article and its successor (the BMP example) are intended to be read
alongside Charles Moore's description of Color Forth as given in the three
references below.

Notation and Glossary

Ordinary text Explanatory text - not source code
Source text Source code (in a variety of colours)

Source Code Colour Key:

() Text Comments in blue
WORD Interpret mode in red (viz define this token as a new name in the

dictionary)
SWAP Compilation mode in green
BUF Execution mode in black (white in the original video source)
999 Decimal numbers in grey
FFFF Hexadecimals in cyan
 _ Compile the number on the TOS

(A green underscore which has the same meaning as a green space
in the (video) source code)

Notation

flag? A word or words which push a boolean value for use by IF.
w0 w1 .. In the examples below these are assumed to be pre-defined

application words.

Basic Constructs
Here is a list of elementary program structures. Each program or fragment is first
shown on a single line, then explained in detail one token or one expression to
the line.

1. WORD1 w0 w1 w2 ; WORD1
Create a word and execute it.

The simplest CF program. Build a subroutine called WORD1 then execute it.

Explanation:

1. A comment
WORD1 Create WORD1
w0 w1 w2 Compile w0, w1 and w2
; Not compiled
WORD1 Executing WORD1 causes w0, w1 and w2 to be executed.

Note that because of tail-recursion optimisation (see previous article) the ;
is not compiled.

2. WORD1 w0 w1 w2 word1 ; WORD1
An infinite loop

Explanation:

WORD1 Create WORD1
w0 w1 w2 Compile w0, w1 and w2
word1 Compile a jump to w0
; Not compiled
WORD1 Executing WORD1 causes w0, w1 and w2 to be repeatedly

executed.

3. WORD1 flag? IF w0 w1 w2 ; THEN w3 w4 w5 ; WORD1
A Two-Branched Conditional

Explanation:

WORD1 Create word WORD1
flag? Compile flag? (which modifies the flag for use by IF)
IF Compile the run time behaviour for IF
w0 w1 w2 Compile these words. Will be executed when flag? is true
; Not compiled
THEN
w3 w4 w5 Compile these words. Will be executed when flag? is false
;

WORD1 If flag? is true execute w0, w1 and w2, then return. Else
execute w3, w4 and w5 and return.

Note: For a single-branched test, just remove w3 w4 w5.

Note: Whereas with Machine Forth, the flag? was preserved, in Color
Forth, Chuck has reverted to the classical IF which consumes the flag?.

4. WORD1 flag? IF w0 w1 w2 WORD1 ; THEN w3 w4 w5 ; WORD1
A While-True loop

Explanation:

WORD1 Create word WORD1
flag? Compile flag?
IF Compile the run time behaviour for IF
w0 w1 w2 Compile these words. Will be executed when flag? is true
WORD1 Compile a jump to flag?

; Not compiled
THEN
w3 w4 w5 Compile these words. Will be executed when flag? is false
; Not compiled
WORD1 While flag? is true, execute w0, w1 and w2 then repeat.
 Else execute w3, w4 and w5 and return.

5. WORD1 flag? IF w0 w1 w2 ; THEN w3 w4 w5 WORD1 ; WORD1
A While-False loop

Explanation:

WORD1 Create word WORD1
flag? Compile flag?
IF Compile the run time behaviour for IF
w0 w1 w2 Compile these words. Will be executed when flag? is true
; Not compiled
THEN
w3 w4 w5 Compile these words. Will be executed when flag? is false
WORD1 Compile a jump to flag?
; Not compiled
WORD1 While flag? is false, execute w3, w4 and w5 and repeat.

Else execute w0, w1 and w2 and return.

6. WORD1 w1 WORD2 w2 WORD3 w3 ; WORD1 WORD2 WORD3
Multiple entry points

Explanation:

This is a feature not supported by ANS Forth.

WORD1 Create WORD1
w1 Compile w1
WORD2 Create WORD2
w2 Compile w2
WORD3 Create WORD3
w3 Compile w3
; Not compiled
WORD1 Execute w1, w2 and w3 then return
WORD2 Execute w2 and w3 then return
WORD3 Execute w3 then return

7. 255 FE +
Evaluate an expression containing literals

Explanation:

255 (-- 255) Push decimal 255
FE (-- 255 254) Push hex FF
+ (-- 509) Add them

8. WORD1 255_FE_+ ; WORD1
Compile an expression containing literals

Explanation:

 [Note: The next stack pictures show the stack during compilation]

WORD1 Compile Word1
255 (-- 255) Push decimal 255
_ (--) Compile it
FE (-- 254) Push hex FE
_ (--) Compile it
+ Compile add
;
WORD1 Execute Word1 with the following run-time
behaviour:

(-- 255) 255 pushed to stack
(-- 255 254) Hex FE pushed
(-- 509) Add

9. 10_BEGIN w0 w1 w2 NEXT
Set up the index for a loop

Explanation:

This example pushes decimal 10 onto the stack at run-time, where it will
be used as the index for the loop. [This is not as inconvenient as it seems
because the A register is available for holding an intermediate value - Ed.]

 w0, w1 and w2 are executed 10 times.

10. VARIABLE w0 w1 w2
Declare 3 variables called w1, w2 and w3

Some Idioms
Here are some frequently-used instruction sequences:

1. BUF_A!
An efficient way to access a variable's address

Note: The variable's name is in black, followed by the green underscore.

Explanation:

BUF (-- ^buf) Push the address
_ (--) Compile the literal
A! (--) Compile A!

At run-time, the address is pushed, then A! stores it into the accumulator A.

2. A 20_+ A! (A = A + 20)
 A -20_+ A! (A = A - 20)
 Read, modify and write A

Explanation:

This is the sequence to modify A for pointer arithmetic where an
increment-by-one isn't suitable. E.g. adding or subtracting the 'stride' of
an array, or stepping through large fields in a record.
Note that there is no subtraction primitive. '-' must be defined as a
high-level word.

3. WORD1 @+ flag? IF w0 w1 w2 word1 ; THEN w3 w4 w5 ; ...
 Process a stream using pointer arithmetic

Explanation:

While flag? is true execute w0, w1 and w2 then repeat; else execute
w3, w4 and w5 then return.
In each loop, initially fetch the contents pointed to by A, and increment
A.

No flag? word is needed if it is intended to exit on A=zero (as false
causes a jump to the exit sequence). So as a special case we can write:

WORD1 @+ IF w0 w1 w2 word1 ; THEN w3 w4 w5 ; ...
or
WORD2 @+ DUP IF w0 w1 w2 word1 ; THEN DROP w3 w4 w5 ; ...

The WORD2 version has a DUP to allow the data value fetched to be used
by the true block.
This is a fast and elegant way of scanning an array with an exit-on-zero.

4. WORD1 20_BEGIN @+ w0 w1 w2 NEXT ...
Process a stream using an index

Explanation:

Set the index to 20. In each loop, fetch the contents of A; increment A;
process w0, w1 and w2 then decrement the index and repeat if not
zero. WHILE loops are the method of choice as they don't require an
index.

The next article is my annotation to Charles Moores's Color Forth
program BMP, which converts a VGA screen to a BMP file.

References
1. Color Forth
 http://www.UltraTechnology.com/color4th.html

2. 1X Forth
 http://www.UltraTechnology.com/1xforth.htm

3. Dispelling the User Illusion
 http://www.UltraTechnology.com/cm52299.htm
 This includes the source code for the BMP example.

John Tasgal
0161 7739365

john@tcl.prestel.co.uk

The BMP Example
John Tasgal

Charles Moore has provided an example of Color Forth1 in use, which describes
the conversion of a video screen to a BMP file. Before looking at the code, here is
some background information.

The Program
The aim is to format a video buffer and write it to another area of memory, the
BMP buffer.

When this has been done, Color Forth is exited and, having recorded the start
and length of that buffer, the memory is saved to disk using DOS. The screen is
in VGA mode with a resolution of 640 columns and 480 rows. Each pixel is
represented as a single byte, giving 256 colours.

The original implementation of Color Forth uses a 20-bit cell on the i21
processor. This code is for a PC implementation using a 32-bit cell.

BMP Format
A BMP (Window's Bit Map) file has three parts - a header, a palette, and the
video data itself, as shown here.

Offset Contents
0000h Bitmap type ("BM" for Windows)
0002h File size in bytes.
0006h Reserved
000Ah Bitmap Data Offset from beginning of file to the beginning of the

bitmap data.
000Eh Length of the Bitmap Info Header used to describe the bitmap colours etc
(= 28h for Windows)
0012h Horizontal width of bitmap in pixels.
0016h Vertical height of bitmap in pixels.
001Ah Number of planes in this bitmap.

1 Dispelling the User Illusion
 http://www.UltraTechnology.com/cm52299.htm

mailto:john@tcl.prestel.co.uk

001Ch Bits Per Pixel
001Eh Compression Type. 0 = none; 1 = RLE8; 2 RLE4; 3 = Bitfields
0022h Size of bitmap data in bytes, rounded up to 4 byte boundary.
0026h Horizontal resolution in pixels/m.
002Ah Vertical resolution in pixels/m.
002Eh Number of colors used by this bitmap. For a 8bit/pixel bitmap this

will be 256.
0032h Number of important colors
0036h The Palette of size = (#colours* 4) bytes. Each entry has 4 bytes:

blue, green, red, filler. The filler is set to zero.
0436h Bitmap Data

The Algorithm
To minimise the amount of data to be stored, the extent of the image must be
established.

First, the frame surrounding the image is filled with zeroes. Then, the rectangle
defining the outer limits of the image is found by scanning the whole picture in
four directions:

��top down to find the top edge;
��bottom up for the lower edge;
��left to right for the left edge;
��and right to left for the right edge.

This yields:

 BUF a pointer variable to hold an address
 H the height, and
 W the width

That buffer is now formatted and written to the BMP buffer. Please refer to the
'User Illusion' text to see Charles Moore's description of this program.

Glossary
Variables:

BUF the address of the top left corner (and therefore the start of the
image array in the video buffer)

H the height, and
W the width

Procedures:

ROW (stride ^row -- true | stride false)

Scan a row beginning at ^row.
Returns 0 for a blank line, non-zero otherwise.

ROWS (stride ^row --) Scan rows to find first non-zero row.
Store value in H.

COL (stride ^col -- true | stride false)Is this a blank column ?

COLS (stride ^col -- stride)
Scan columns looking for first non-blank.
Return width in W, and set BUF to first
column.

N, (u advance --) Write a value to the location pointed to by
BUF (the BMP buffer pointer).

2, (u --) Write a value to the BMP buffer, incrementing
 the BUF pointer by 2 bytes.

PACK (pel2 -- packpel2) Pack and invert pixels
 (xbxa -- xxab) where a and b are nibble-sized pixels.

ROW () Write a packed row to the BMP buffer

ROWS (^buf --) Write the video buffer to the data part of the
BMP buffer

The Source Code2
Chuck uses a format of blocks organised in 12 lines of 20 characters. The code
which follows uses a more conventional format.

FRAME A comment
EMPTY (--) Minimise the dictionary
Declare variables
VARIABLE BUF W H Create buffer, width and height variables

Next define ROW, ROWS, COL and COLS. First is ROW :
1. set up the loop count
2. enter the begin ... next loop
3. fetch 4 pixels and increment A
4. if they're all blank then continue round the loop
5. else exit

2This is a fairly complete annotation but some parts of the code (marked with
"??") defied analysis. This may be partly due to errors in the published HTML
page which contains a few copying errors. Both John and I have spent some time
trying (and failing) to decode the exact stack behaviour. If any reader can solve
the puzzle, please write in. - Ed.

ROW (stride ^row -- true OR stride false)
Scan a row beginning at ^row
Return 0 for a blank line, non-zero otherwise

 A! (-- stride) Read row address into A
 159_ (-- stride i) Push limit for loop to do 160 fetches of 4 bytes to

scan all 640 pixels across image.
[Original reads 169, not 159 - Ed.]

 BEGIN (-- stride i)
 @+ (-- stride i pel4) Fetch pel4, increment A. pel4 is shorthand for 4
 byte-sized pixels packed into one 32-bit word.
 IF (-- stride i) Test for a zero value indicating 4 blank pixels.
 + (-- stride+i) If not found, leave a non-zero value on the stack
 ; (-- non-zero) and return.
 THEN (-- stride i) If all pixels are blank, continue.
 DROP [?? Surely a mistake - Ed.]
 NEXT (-- stride i-1) Decrement loop count
 0_ (-- stride 0) If it gets to here, the row is all zeroes,
; so push a zero and return

ROWS is a while-false loop .

1. while ROW returns false (a blank line)
2. decrement H

ROWS (stride ^row --)
Scans across to find first non-zero row.
Stores value in H.
 DUP BUF_ ! (-- stride ^row) Store current row in BUF
 ROW (-- true OR stride false) Is this row non-blank ?
 IF (--) If a non-blank line
 DROP DROP [?? Surely a mistake - Ed.]
 ; (--) return (with BUF set to current row)
 THEN (-- stride) If all pixels are blank, continue.
 DROP [?? Surely a mistake - Ed.]
 -1_H_+! (-- stride) Decrement H
 DUP A + (-- stride ^row) Point to next row3
 ROWS Jump back to first DUP (i.e. scan next row)
 ;

Identify the upper and lower edges by calling ROWS twice; first top down, then
bottom up.

3 This would work if A always held the row address at this point.

448 H ! Set H to max number of rows. As 480-32 =448, presumably these 32

rows are for the command line.

VGA 0 (-- ^vga 0)
OVER ROWS (-- ^vga) Find first edge by scanning up.
-1280 SWAP (-- -1280 ^vga)
640 447 * This product is the max number of pixels in the image
+ (-- -1280 ^vga+[640*447])
ROWS (--) Find second edge by scanning down.4

COL (^col ^newcol -- true OR ^col false)
Do all rows in this column contain blank pixels?
 A! (-- ^col) Make A point to the start of a column.
 H @ -1 +_ (-- ^col #rows-1) Loop limit is number of rows-1 to scan.
 BEGIN (-- ^col i)
 @+ (-- ^col i pel4) Fetch pel4 and increment A by 4
 FF_AND (-- ^col i pel) Extract single pixel by clearing all but the

lower 8 bits.
 IF (-- ^col i) If pixel is not blank,
 + (-- non-zero) leave a non-zero result
 ; (-- true) and return.
 THEN (-- ^col i) Else advance to the next row and continue
 DROP [?? Surely a mistake - Ed.]
 A -644_ + A! (-- ^col i) Point A to next row -640 - 4. -4 is

needed as @+ incremented A by 4
(Original reads 544, not 644 - Ed.)

 NEXT (-- ^col i-1) Next row
 0_ (-- ^col 0) If all rows are blank, push 0
;

COLS (^col --)
Scan columns looking for first non-blank one.
Return width in W, and set BUF to first column
 DUP BUF_! (-- ^col) Point BUF to start of column
 COL (-- true OR ^col false) is this column blank?
 IF If non-blank column,
 DROP

4 We've now found H, the number of rows in the image, but we seem to have
discarded the address where the first row of the image starts.

 ; (--) then return
 THEN (-- ^col) Else continue
 DROP [?? Surely a mistake - Ed.]

 -1_ W_ +! (-- stride) Decrement W
 DUP A + (-- ^nextcol) Point to start of next column
 COLS Jump back to first DUP i.e. scan next column
 ;

Identify the left and right edges by calling COLS twice: first left-to-right, then
right-to-left

640 W ! (--) Set W to max # of cols
BUF @ H @ (-- BUF H)
640 * -1 + (-- BUF #pix) #pix = (H*640)-1, i.e. no. of pixels

containing the image after trimming blank rows
from top and bottom.

OVER 639 + (-- BUF #pix buf') buf' = buf + 639
COLS (-- BUF #pix) Scan left-to-right
2 + SWAP (-- #pix+2 BUF)
COLS (-- #pix+2) Scan right-to-left
DROP (--)
W @ 1 + -2 AND (-- W') Rounds W up to nearest even number so that

2-byte reads and writes can be used.
W ! (--) Store result in W

BUF, H and W now have their final values and we prepare to write to the buffer
BMP .

BUF @ (-- bufold) Save old value of BUF
B71000 BUF ! (-- bufold) Change BUF
, (--)
4 (-- 4)

N, (n Advance --) Store a word of data at the location

pointed to by BUF. Advance the pointer BUF by
Advance bytes.

 SWAP (-- n2 Offset n1)
 BUF @ ! Store the first word
 BUF_+! Advance the pointer

[Original reads +1, not +! - Ed.]
;

2, (n --) Write a 16-bit word to the BUF buffer
 2_ (-- n 2) 2 = bytes to advance
 N, (--)
;

Now writing to the BMP buffer can begin. First, the header:

BM [Is this a misprint? - Ed.]
4D42 2, Store ASCII "BM" at offset 0000h
W @ H @ (-- W H)
2 */ (-- (W*H)/2) The bitmap size in bytes ..
16 4 * + (-- size1) Add 64 for the palette ..
54 + (-- size2) Add 54 for the header ..
, and store at offset 0002h.
0 , 0006h Reserved
118 , 000Ah Bitmap Data Offset
40 , 000Eh Length of the Bitmap Info Header
W @ , 0012h Width
H @ , 0016h Height
1 2, 001Ah Number of planes in this bitmap
4 2, 001Ch Bits Per Pixel
0 , 001Eh Compression Type. 0 = none
W @ H @
2 */ , 0022h Size of bitmap data in bytes, rounded up to 4 byte boundary
0 , 0026h Horizontal resolution
0 , 002Ah Vertical resolution
0 , 002Eh Number of colors used by this bitmap. For a 4bit/pixel bitmap

this should be 16 (?)
0 , 0032h Number of important colors
(?) 0036h The Palette of size = (#colours* 4) bytes
ORGB Probably moves pointer to the palette origin.

Next, write the Palette data. The fourth byte is the filler and is always zero. So
only up to 3 bytes are ever specified.

 FFFFFF , FF00 , FF , FFFFF ,
 E00000 , E0C000 , FFFF00 , 808000 ,
 408080 , 40F040 , 40FC , E000C0 ,
 E00040 , C0FFFF , 404040 , FCFCFC ,

Finally, we have the video data section. Although the code has been written for
256 colours in memory, only 16 are used at present so the video data is packed
before writing to the file. PACK takes two pixels of one byte each and packs them

in inverted order into one byte. For the algorithm below to work it assumes that
the data is in two bytes with the pixel data in each of the lower nibbles; the data
in the upper nibbles may be discarded.

i.e. PACK (xbxa -- xxab)

Where x means don't care. The aim is to shift and swap, then do this OR as in:

 xxa0
 xx0b
 xxab after OR'ing

The data in the upper byte is ignored as, although the data is sent out a word at
a time, it is overwritten by the next low byte to be sent. '*/' is shown black in
the text - changed here to green.

PACK (pel2 -- packpel2) Pack two pixels
 (0b0a -- xxab) a and b are nibble-sized pixels
 DUP (-- 0b0a 0b0a)
 1_256_*/ (-- 0b0a 000b) shift n0 right 8 bits
 SWAP (-- 000b 0b0a)
 16_* (-- 000b b0a0) shift n1 left 4 bits
 OR (-- xxab) packed and inverted
;

BMP is written from bottom to top
Note: This is the second definition of ROW and ROWS.

ROW (--) Write a packed row to the BMP buffer
 W @ 2/ (-- W/2) No. of bytes to write
 -1 +_ (-- W/2-1)
 BEGIN (-- i)
 @+ (-- i pel4) Fetch 4 pixels
 PACK (-- i packpel2) Pack 2 pixels into the lowest byte
 1_N, (-- i) Write the packed byte to BMP buffer
 A -2_+ A! (-- i) Decrement A for next 2 pixels
 NEXT (-- i-1)
;

[It is interesting to see that the code for ROW, PACK and N, work together to
read data 2 bytes at a time and write it out byte by byte independently of the cell
size of Color Forth (which seems to be 4 bytes) - Ed.]

ROWS (^buf --) Write the video buffer to the data part of the BMP
buffer.

 A! (--) Set A to point to the start of the data
 H @ -1 +_ (-- i=H-1) Loop limit, once for each row
 BEGIN
 ROW (-- i) Write a row
 A (-- i A)
 W @ -639 +_ W-639 is computed at compile time
 (Original reads @ - 639, not @ -639 - Ed.)
 + (-- i A+(W-639)) Address of next row
 A!
 NEXT (--i-1)
;

ROWS (--) Write the video data

Acknowledgements
I would like to thank Chris Jakeman for suggesting I write these articles.
Many thanks also to Jeff Fox for kindly reviewing an earlier draft and providing
an excellent web site.

Editor's Note: We regret the problems found in decoding this example, which
would surely be overcome with help from Chuck himself. We hope that they do
not obscure the many techniques Chuck has introduced to simplify the compiler
and make Forth more appropriate for his current work.

These include:

��Use of the special A register
��Optimisation using ";"
��Looping back to the start of a word by repeating its name
��Looping using BEGIN NEXT
��Colour syntax for brevity

FIG UK Services to Members

Magazine

Library

Web Site

IRC

Members

Beyond the
UK

Forthwrite is our regular magazine, which has been in
publication for more than 100 issues. Most of the
contributions come from our own members and Chris
Jakeman, the Editor, is always ready to assist new authors
wishing to share their experiences of the Forth world.

Our library provides a service unmatched by any other FIG
chapter. Not only are all the major books available, but also
conference proceedings, back-issues of Forthwrite and also
of the magazine of International FIG, Forth Dimensions. The
price of a loan is simply the cost of postage out and back.

Jack Brien maintains our web site at http://forth.org.uk. He
publishes details of FIG UK projects, a regularly-updated
Forth News report, indexes to the Forthwrite magazine and
the library as well as specialist contributions such as “Build
Your Own Forth” and links to other sites. Don’t forget to
check out the “FIG UK Hall of Fame”.

Software for accessing Internet Relay Chat is free and easy
to use. FIG UK members (and a few others too) get together
on the #FIG UK channel every month. Check Forthwrite for
details.

The members are our greatest asset. If you have a problem,
don’t struggle in silence - someone will always be able to
help. Do consider joining one of our joint projects.
Undertaken by informal groups of members, these are very
successful and an excellent way to gain both experience and
good friends.

FIG UK has links with International FIG, the German Forth-
Gesellschaft and the Dutch Forth Users Group. Some of our
members have multiple memberships and we report
progress and special events. FIG UK has attracted a core of
overseas members; please ask if you want an accelerated
postal delivery for your Forthwrite.

	Structured bookmarks
	1
	2
	3
	4

